Dachuan Huang
National University of Singapore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dachuan Huang.
Nature | 2011
Ignacio Varela; Patrick Tarpey; Keiran Raine; Dachuan Huang; Choon Kiat Ong; Philip Stephens; Helen Davies; David Jones; Meng-Lay Lin; Jon Teague; Graham R. Bignell; Adam Butler; Juok Cho; Gillian L. Dalgliesh; Danushka Galappaththige; Christopher Greenman; Claire Hardy; Mingming Jia; Calli Latimer; King Wai Lau; John Marshall; Stuart McLaren; Andrew Menzies; Laura Mudie; Lucy Stebbings; David A. Largaespada; Lodewyk F. A. Wessels; Stéphane Richard; Richard J. Kahnoski; John Anema
The genetics of renal cancer is dominated by inactivation of the VHL tumour suppressor gene in clear cell carcinoma (ccRCC), the commonest histological subtype. A recent large-scale screen of ∼3,500 genes by PCR-based exon re-sequencing identified several new cancer genes in ccRCC including UTX (also known as KDM6A), JARID1C (also known as KDM5C) and SETD2 (ref. 2). These genes encode enzymes that demethylate (UTX, JARID1C) or methylate (SETD2) key lysine residues of histone H3. Modification of the methylation state of these lysine residues of histone H3 regulates chromatin structure and is implicated in transcriptional control. However, together these mutations are present in fewer than 15% of ccRCC, suggesting the existence of additional, currently unidentified cancer genes. Here, we have sequenced the protein coding exome in a series of primary ccRCC and report the identification of the SWI/SNF chromatin remodelling complex gene PBRM1 (ref. 4) as a second major ccRCC cancer gene, with truncating mutations in 41% (92/227) of cases. These data further elucidate the somatic genetic architecture of ccRCC and emphasize the marked contribution of aberrant chromatin biology.
Nature Genetics | 2012
Choon Kiat Ong; Chutima Subimerb; Chawalit Pairojkul; Sopit Wongkham; Ioana Cutcutache; Willie Yu; John R. McPherson; George E. Allen; Cedric Chuan Young Ng; Bernice Huimin Wong; Swe Swe Myint; Vikneswari Rajasegaran; Hong Lee Heng; Anna Gan; Zhi Jiang Zang; Yingting Wu; Jeanie Wu; Ming Hui Lee; Dachuan Huang; Pauline Ong; Waraporn Chan-on; Yun Cao; Chao Nan Qian; Kiat Hon Lim; Aikseng Ooi; Karl Dykema; Kyle A. Furge; Veerapol Kukongviriyapan; Banchob Sripa; Chaisiri Wongkham
Opisthorchis viverrini–related cholangiocarcinoma (CCA), a fatal bile duct cancer, is a major public health concern in areas endemic for this parasite. We report here whole-exome sequencing of eight O. viverrini–related tumors and matched normal tissue. We identified and validated 206 somatic mutations in 187 genes using Sanger sequencing and selected 15 genes for mutation prevalence screening in an additional 46 individuals with CCA (cases). In addition to the known cancer-related genes TP53 (mutated in 44.4% of cases), KRAS (16.7%) and SMAD4 (16.7%), we identified somatic mutations in 10 newly implicated genes in 14.8–3.7% of cases. These included inactivating mutations in MLL3 (in 14.8% of cases), ROBO2 (9.3%), RNF43 (9.3%) and PEG3 (5.6%), and activating mutations in the GNAS oncogene (9.3%). These genes have functions that can be broadly grouped into three biological classes: (i) deactivation of histone modifiers, (ii) activation of G protein signaling and (iii) loss of genome stability. This study provides insight into the mutational landscape contributing to O. viverrini–related CCA.
Nature Genetics | 2013
Waraporn Chan-on; Maarja-Liisa Nairismagi; Choon Kiat Ong; Weng Khong Lim; Simona Dima; Chawalit Pairojkul; Kiat Hon Lim; John R. McPherson; Ioana Cutcutache; Hong Lee Heng; London L. P. J. Ooi; Alexander Y. F. Chung; Pierce K. H. Chow; Peng Chung Cheow; Ser Yee Lee; Su Pin Choo; Iain Bee Huat Tan; Dan G. Duda; Anca Nastase; Swe Swe Myint; Bernice Huimin Wong; Anna Gan; Vikneswari Rajasegaran; Cedric Chuan Young Ng; Sanjanaa Nagarajan; Apinya Jusakul; Shenli Zhang; Priya Vohra; Willie Yu; Dachuan Huang
The impact of different carcinogenic exposures on the specific patterns of somatic mutation in human tumors remains unclear. To address this issue, we profiled 209 cholangiocarcinomas (CCAs) from Asia and Europe, including 108 cases caused by infection with the liver fluke Opisthorchis viverrini and 101 cases caused by non–O. viverrini–related etiologies. Whole-exome sequencing (n = 15) and prevalence screening (n = 194) identified recurrent somatic mutations in BAP1 and ARID1A, neither of which, to our knowledge, has previously been reported to be mutated in CCA. Comparisons between intrahepatic O. viverrini–related and non–O. viverrini–related CCAs demonstrated statistically significant differences in mutation patterns: BAP1, IDH1 and IDH2 were more frequently mutated in non–O. viverrini CCAs, whereas TP53 mutations showed the reciprocal pattern. Functional studies demonstrated tumor suppressive functions for BAP1 and ARID1A, establishing the role of chromatin modulators in CCA pathogenesis. These findings indicate that different causative etiologies may induce distinct somatic alterations, even within the same tumor type.
Science Translational Medicine | 2013
Song Ling Poon; See Tong Pang; John R. McPherson; Willie Yu; Kie Kyon Huang; Peiyong Guan; Wen-Hui Weng; Ee Yan Siew; Yujing Liu; Hong Lee Heng; Soo Ching Chong; Anna Gan; Su Ting Tay; Weng Khong Lim; Ioana Cutcutache; Dachuan Huang; Lian Dee Ler; Maarja Liisa Nairismägi; Ming Hui Lee; Ying Hsu Chang; Kai Jie Yu; Waraporn Chan-on; Bin Kui Li; Yun Fei Yuan; Chao Nan Qian; Kwai Fong Ng; Ching Fang Wu; Cheng Lung Hsu; Ralph M. Bunte; Michael R. Stratton
Genome-wide mutational signatures of the group 1 carcinogen aristolochic acid are observed in urothelial cancers and liver cancers from Asia. Carcinogen AAlert Aristolochic acid (AA) is a natural compound derived from plants in the Aristolochia genus. For centuries, Aristolochia has been used throughout Asia to treat a variety of ailments as a component of traditional Chinese medicine. In recent years, however, a more sinister side of this herb has come to light when it was linked to kidney damage and cancers of the urinary tract. Now, two studies by Poon et al. and Hoang et al. present a “molecular signature” of AA-induced DNA damage, which helps to explain the mutagenic effects of AA and may also be useful as a way to detect unsuspected AA exposure as a cause of cancer. The molecular signature seen in AA-associated tumors is characterized by a predominance of A:T-to-T:A transversions, a relatively unusual type of mutation that is infrequently seen in other types of cancer, including those caused by other carcinogens. These mutations concentrate at splice sites, causing the inappropriate inclusion or exclusion of entire exons in the resulting mRNA. The overall mutation rate is another notable feature of AA-associated cancers because it is several times higher than the rate of mutations caused by other carcinogens such as tobacco and ultraviolet light. In both studies, the authors also used the molecular signature to discover that AA was a likely cause of tumors previously attributed to other carcinogens. In one case, a urinary tract cancer that had been attributed to smoking and, in the other case, a liver cancer previously attributed to a chronic hepatitis infection were both identified as having the telltale signature of AA mutagenesis. The identification of a specific molecular signature for AA has both clinical and public health implications. For individual patients, the molecular signature could help physicians identify which tumors were caused by AA. Although this information cannot yet be used to optimize the treatment of individual patients, those who are diagnosed with AA-associated cancers could be monitored more closely for the appearance of additional tumors. Meanwhile, a better understanding of the mutagenic effects of AA should also help to strengthen public health efforts to decrease exposure to this carcinogenic herb. Aristolochic acid (AA), a natural product of Aristolochia plants found in herbal remedies and health supplements, is a group 1 carcinogen that can cause nephrotoxicity and upper urinary tract urothelial cell carcinoma (UTUC). Whole-genome and exome analysis of nine AA-associated UTUCs revealed a strikingly high somatic mutation rate (150 mutations/Mb), exceeding smoking-associated lung cancer (8 mutations/Mb) and ultraviolet radiation–associated melanoma (111 mutations/Mb). The AA-UTUC mutational signature was characterized by A:T to T:A transversions at the sequence motif A[C|T]AGG, located primarily on nontranscribed strands. AA-induced mutations were also significantly enriched at splice sites, suggesting a role for splice-site mutations in UTUC pathogenesis. RNA sequencing of AA-UTUC confirmed a general up-regulation of nonsense-mediated decay machinery components and aberrant splicing events associated with splice-site mutations. We observed a high frequency of somatic mutations in chromatin modifiers, particularly KDM6A, in AA-UTUC, demonstrated the sufficiency of AA to induce renal dysplasia in mice, and reproduced the AA mutational signature in experimentally treated human renal tubular cells. Finally, exploring other malignancies that were not known to be associated with AA, we screened 93 hepatocellular carcinoma genomes/exomes and identified AA-like mutational signatures in 11. Our study highlights an unusual genome-wide AA mutational signature and the potential use of mutation signatures as “molecular fingerprints” for interrogating high-throughput cancer genome data to infer previous carcinogen exposures.
Cancer Research | 2011
Zhi Jiang Zang; Choon Kiat Ong; Ioana Cutcutache; Willie Yu; Shen Li Zhang; Dachuan Huang; Lian Dee Ler; Karl Dykema; Anna Gan; Jiong Tao; Siyu Lim; Yujing Liu; Phillip Andrew Futreal; Heike Grabsch; Kyle A. Furge; Liang Kee Goh; Steve Rozen; Bin Tean Teh; Patrick Tan
Genetic alterations in kinases have been linked to multiple human pathologies. To explore the landscape of kinase genetic variation in gastric cancer (GC), we used targeted, paired-end deep sequencing to analyze 532 protein and phosphoinositide kinases in 14 GC cell lines. We identified 10,604 single-nucleotide variants (SNV) in kinase exons including greater than 300 novel nonsynonymous SNVs. Family-wise analysis of the nonsynonymous SNVs revealed a significant enrichment in mitogen-activated protein kinase (MAPK)-related genes (P < 0.01), suggesting a preferential involvement of this kinase family in GC. A potential antioncogenic role for MAP2K4, a gene exhibiting recurrent alterations in 2 lines, was functionally supported by siRNA knockdown and overexpression studies in wild-type and MAP2K4 variant lines. The deep sequencing data also revealed novel, large-scale structural rearrangement events involving kinases including gene fusions involving CDK12 and the ERBB2 receptor tyrosine kinase in MKN7 cells. Integrating SNVs and copy number alterations, we identified Hs746T as a cell line exhibiting both splice-site mutations and genomic amplification of MET, resulting in MET protein overexpression. When applied to primary GCs, we identified somatic mutations in 8 kinases, 4 of which were recurrently altered in both primary tumors and cell lines (MAP3K6, STK31, FER, and CDKL5). These results demonstrate that how targeted deep sequencing approaches can deliver unprecedented multilevel characterization of a medically and pharmacologically relevant gene family. The catalog of kinome genetic variants assembled here may broaden our knowledge on kinases and provide useful information on genetic alterations in GC.
Nature Genetics | 2015
Jing Tan; Choon Kiat Ong; Weng Khong Lim; Cedric Chuan Young Ng; Aye Aye Thike; Ley Moy Ng; Vikneswari Rajasegaran; Swe Swe Myint; Sanjanaa Nagarajan; Saranya Thangaraju; Sucharita Dey; Nur Diyana Md Nasir; Giovani Claresta Wijaya; Jing Quan Lim; Dachuan Huang; Zhimei Li; Bernice Huimin Wong; Jason Yongsheng Chan; John R. McPherson; Ioana Cutcutache; Gregory Poore; Su Ting Tay; Wai Jin Tan; Thomas Choudary Putti; Buhari Shaik Ahmad; Philip Iau; Ching Wan Chan; Anthony Tang; Wei Sean Yong; Preetha Madhukumar
Breast fibroepithelial tumors comprise a heterogeneous spectrum of pathological entities, from benign fibroadenomas to malignant phyllodes tumors. Although MED12 mutations have been frequently found in fibroadenomas and phyllodes tumors, the landscapes of genetic alterations across the fibroepithelial tumor spectrum remain unclear. Here, by performing exome sequencing of 22 phyllodes tumors followed by targeted sequencing of 100 breast fibroepithelial tumors, we observed three distinct somatic mutation patterns. First, we frequently observed MED12 and RARA mutations in both fibroadenomas and phyllodes tumors, emphasizing the importance of these mutations in fibroepithelial tumorigenesis. Second, phyllodes tumors exhibited mutations in FLNA, SETD2 and KMT2D, suggesting a role in driving phyllodes tumor development. Third, borderline and malignant phyllodes tumors harbored additional mutations in cancer-associated genes. RARA mutations exhibited clustering in the portion of the gene encoding the ligand-binding domain, functionally suppressed RARA-mediated transcriptional activation and enhanced RARA interactions with transcriptional co-repressors. This study provides insights into the molecular pathogenesis of breast fibroepithelial tumors, with potential clinical implications.
Gut | 2015
Na-Yu Chia; Niantao Deng; Kakoli Das; Dachuan Huang; Longyu Hu; Yansong Zhu; Kiat Hon Lim; Minghui Lee; Jeanie Wu; Xin Xiu Sam; Gek San Tan; Wei Keat Wan; Willie Yu; Anna Gan; Angie Lay Keng Tan; Tay St; Khee Chee Soo; Wai Keong Wong; Lourdes Trinidad M Dominguez; Huck-Hui Ng; Steve Rozen; Liang Kee Goh; Bin-Tean Teh; Patrick Tan
Objective Gastric cancer (GC) is a deadly malignancy for which new therapeutic strategies are needed. Three transcription factors, KLF5, GATA4 and GATA6, have been previously reported to exhibit genomic amplification in GC. We sought to validate these findings, investigate how these factors function to promote GC, and identify potential treatment strategies for GCs harbouring these amplifications. Design KLF5, GATA4 and GATA6 copy number and gene expression was examined in multiple GC cohorts. Chromatin immunoprecipitation with DNA sequencing was used to identify KLF5/GATA4/GATA6 genomic binding sites in GC cell lines, and integrated with transcriptomics to highlight direct target genes. Phenotypical assays were conducted to assess the function of these factors in GC cell lines and xenografts in nude mice. Results KLF5, GATA4 and GATA6 amplifications were confirmed in independent GC cohorts. Although factor amplifications occurred in distinct sets of GCs, they exhibited significant mRNA coexpression in primary GCs, consistent with KLF5/GATA4/GATA6 cross-regulation. Chromatin immunoprecipitation with DNA sequencing revealed a large number of genomic sites co-occupied by KLF5 and GATA4/GATA6, primarily located at gene promoters and exhibiting higher binding strengths. KLF5 physically interacted with GATA factors, supporting KLF5/GATA4/GATA6 cooperative regulation on co-occupied genes. Depletion and overexpression of these factors, singly or in combination, reduced and promoted cancer proliferation, respectively, in vitro and in vivo. Among the KLF5/GATA4/GATA6 direct target genes relevant for cancer development, one target gene, HNF4α, was also required for GC proliferation and could be targeted by the antidiabetic drug metformin, revealing a therapeutic opportunity for KLF5/GATA4/GATA6 amplified GCs. Conclusions KLF5/GATA4/GATA6 may promote GC development by engaging in mutual crosstalk, collaborating to maintain a pro-oncogenic transcriptional regulatory network in GC cells.
Cancer Research | 2012
Bill Wondergem; Zhongfa Zhang; Dachuan Huang; Choon Kiat Ong; Julie Koeman; David Van t Hof; David Petillo; Aikseng Ooi; John Anema; Brian R. Lane; Richard J. Kahnoski; Kyle A. Furge; Bin Tean Teh
The pituitary tumor transforming gene (PTTG1) is a recently discovered oncogene implicated in malignant progression of both endocrine and nonendocrine malignancies. Clear cell renal cell carcinoma (ccRCC) is cytogenetically characterized by chromosome 3p deletions that harbor the ccRCC-related von Hippel-Lindau, PBRM1, BAP1, and SETD2 tumor suppressor genes, along with chromosome 5q amplifications where the significance has been unclear. PTTG1 localizes to the chromosome 5q region where amplifications occur in ccRCC. In this study, we report a functional role for PTTG1 in ccRCC tumorigenesis. PTTG1 was amplified in ccRCC, overexpressed in tumor tissue, and associated with high-grade tumor cells and poor patient prognosis. In preclinical models, PTTG1 ablation reduced tumorigenesis and invasion. An analysis of gene expression affected by PTTG1 indicated an association with invasive and metastatic disease. PTTG1-dependent expression of the RhoGEF proto-oncogene ECT2 was observed in a number of ccRCC cell lines. Moreover, ECT2 expression correlated with PTTG1 expression and poor clinical features. Together, our findings reveal features of PTTG1 that are consistent with its identification of an oncogene amplified on chromsome 5q in ccRCC, where it may offer a novel therapeutic target of pathologic significance in this disease.
International Journal of Cancer | 2009
Felicia Li Sher Tan; Aikseng Ooi; Dachuan Huang; Jing Chii Wong; Chao Nan Qian; Cora Chao; London L. P. J. Ooi; Yu Meng Tan; Alexander Y. F. Chung; Peng Chung Cheow; Zhongfa Zhang; David Petillo; Ximing J. Yang; Bin Tean Teh
Cholangiocarcinoma (CC) and hepatocellularcarcinoma (HCC) are two main forms of liver malignancies, which exhibit differences in drug response and prognosis. Immunohistotochemical staining for cytokeratin markers has been used to some success in the differential diagnosis of CC from HCC. However, there remains a need for additional markers for increased sensitivity and specificity of diagnosis. In this study, we have identified a p38 MAP kinase, p38δ (also known as MAPK13 or SAPK4) as a protein that is upregulated in CC relative to HCC and to normal biliary tract tissues. We performed microarray gene expression profiling on 17 cases of CC, 12 cases of adjacent normal liver tissue, and three case of normal bile duct tissue. p38δ was upregulated in 16 out of 17 cases of CC relative to normal tissue. We subsequently performed immunohistochemical staining of p38δ in 54 cases of CC and 54 cases of HCC. p38δ staining distinguished CC from HCC with a sensitivity of 92.6% and a specificity of 90.7%. To explore the possible functional significance of p38δ expression in CC, we examined the effects of overexpression and knockdown of p38δ expression in human CC cell lines. Our results indicate that p38δ is important for motility and invasion of CC cells, suggesting that p38δ may play an important role in CC metastasis. In summary, p38δ may serve as a novel diagnostic marker for CC and may also serve as a new target for molecular based therapy of this disease.
Science Translational Medicine | 2017
Lian Dee Ler; Sujoy Ghosh; Xiaoran Chai; Aye Aye Thike; Hong Lee Heng; Ee Yan Siew; Sucharita Dey; Liang Kai Koh; Jing Quan Lim; Weng Khong Lim; Swe Swe Myint; Jia Liang Loh; Pauline Ong; Xin Xiu Sam; Dachuan Huang; Tony Kiat Hon Lim; Puay Hoon Tan; Sanjanaa Nagarajan; Christopher Cheng; Henry Ho; Lay Guat Ng; John Yuen; Po-Hung Lin; Cheng-Keng Chuang; Ying-Hsu Chang; Wen-Hui Weng; Steven G. Rozen; Patrick Tan; Caretha L. Creasy; See-Tong Pang
Bladder cancer with loss of KDM6A expression is vulnerable to inhibition of EZH2. Cancer’s loss is targeted therapy’s gain A demethylating protein called KDM6A is a known tumor suppressor, and its function is often lost in bladder cancer as a result of inactivating mutations. There is no way to directly target the loss of the tumor suppressor, but Ler et al. found another strategy to effectively treat tumors with this mutation. The authors demonstrated that KDM6A-deficient cells are dependent on the function of another protein, called EZH2. Small-molecule inhibitors of EZH2 were effective against KDM6A-null bladder cancer in multiple mouse models, paving the way for further development of these drugs. Trithorax-like group complex containing KDM6A acts antagonistically to Polycomb-repressive complex 2 (PRC2) containing EZH2 in maintaining the dynamics of the repression and activation of gene expression through H3K27 methylation. In urothelial bladder carcinoma, KDM6A (a H3K27 demethylase) is frequently mutated, but its functional consequences and therapeutic targetability remain unknown. About 70% of KDM6A mutations resulted in a total loss of expression and a consequent loss of demethylase function in this cancer type. Further transcriptome analysis found multiple deregulated pathways, especially PRC2/EZH2, in KDM6A-mutated urothelial bladder carcinoma. Chromatin immunoprecipitation sequencing analysis revealed enrichment of H3K27me3 at specific loci in KDM6A-null cells, including PRC2/EZH2 and their downstream targets. Consequently, we targeted EZH2 (an H3K27 methylase) and demonstrated that KDM6A-null urothelial bladder carcinoma cell lines were sensitive to EZH2 inhibition. Loss- and gain-of-function assays confirmed that cells with loss of KDM6A are vulnerable to EZH2. IGFBP3, a direct KDM6A/EZH2/H3K27me3 target, was up-regulated by EZH2 inhibition and contributed to the observed EZH2-dependent growth suppression in KDM6A-null cell lines. EZH2 inhibition delayed tumor onset in KDM6A-null cells and caused regression of KDM6A-null bladder tumors in both patient-derived and cell line xenograft models. In summary, our study demonstrates that inactivating mutations of KDM6A, which are common in urothelial bladder carcinoma, are potentially targetable by inhibiting EZH2.