Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dae Heon Kim is active.

Publication


Featured researches published by Dae Heon Kim.


The Plant Cell | 2001

A New Dynamin-Like Protein, ADL6, Is Involved in Trafficking from the trans-Golgi Network to the Central Vacuole in Arabidopsis

Jing Bo Jin; Young Ah Kim; Soo Jin Kim; Sung Hoon Lee; Dae Heon Kim; Gang-Won Cheong; Inhwan Hwang

Dynamin, a high-molecular-weight GTPase, plays a critical role in vesicle formation at the plasma membrane during endocytosis in animal cells. Here we report the identification of a new dynamin homolog in Arabidopsis named Arabidopsis dynamin-like 6 (ADL6). ADL6 is quite similar to dynamin I in its structural organization: a conserved GTPase domain at the N terminus, a pleckstrin homology domain at the center, and a Pro-rich motif at the C terminus. In the cell, a majority of ADL6 is associated with membranes. Immunohistochemistry and in vivo targeting experiments revealed that ADL6 is localized to the Golgi apparatus. Expression of the dominant negative mutant ADL6[K51E] in Arabidopsis protoplasts inhibited trafficking of cargo proteins destined for the lytic vacuole and caused them to accumulate at the trans-Golgi network. In contrast, expression of ADL6[K51E] did not affect trafficking of a cargo protein, H+-ATPase:green fluorescent protein, destined for the plasma membrane. These results suggest that ADL6 is involved in vesicle formation for vacuolar trafficking at the trans-Golgi network but not for trafficking to the plasma membrane in plant cells.


The Plant Cell | 2001

Trafficking of Phosphatidylinositol 3-Phosphate from the trans-Golgi Network to the Lumen of the Central Vacuole in Plant Cells

Dae Heon Kim; Young-Jae Eu; Cheol Min Yoo; Yong-Woo Kim; Kyeong Tae Pih; Jing Bo Jin; Soo Jin Kim; Harald Stenmark; Inhwan Hwang

Very limited information is available on the role of phosphatidylinositol 3-phosphate (PI[3]P) in vesicle trafficking in plant cells. To investigate the role of PI(3)P during the vesicle trafficking in plant cells, we exploited the PI(3)P-specific binding property of the endosome binding domain (EBD) (amino acids 1257 to 1411) of human early endosome antigen 1, which is involved in endosome fusion. When expressed transiently in Arabidopsis protoplasts, a green fluorescent protein (GFP):EBD fusion protein exhibited PI(3)P-dependent localization to various compartments—such as the trans-Golgi network, the prevacuolar compartment, the tonoplasts, and the vesicles in the vacuolar lumen—that varied with time. The internalized GFP:EBD eventually disappeared from the lumen. Deletion experiments revealed that the PI(3)P-dependent localization required the Rab5 binding motif in addition to the zinc finger motif. Overexpression of GFP:EBD inhibited vacuolar trafficking of sporamin but not trafficking of H+-ATPase to the plasma membrane. On the basis of these results, we propose that the trafficking of GFP:EBD reflects that of PI(3)P and that PI(3)P synthesized at the trans-Golgi network is transported to the vacuole through the prevacuolar compartment for degradation in plant cells.


Plant Physiology | 2002

ADP-Ribosylation Factor 1 of Arabidopsis Plays a Critical Role in Intracellular Trafficking and Maintenance of Endoplasmic Reticulum Morphology in Arabidopsis

Mi Hee Lee; Myung Ki Min; Yong Jik Lee; Jing Bo Jin; Dong Han Shin; Dae Heon Kim; Kwang-Hee Lee; Inhwan Hwang

ADP-ribosylation factors (Arf), a family of small GTP-binding proteins, play important roles in intracellular trafficking in animal and yeast cells. Here, we investigated the roles of two Arf homologs, Arf1 and Arf3 of Arabidopsis, in intracellular trafficking in plant cells. We generated dominant negative mutant forms of Arf 1 and Arf3 and examined their effect on trafficking of reporter proteins in protoplasts. Arf1[T31N] inhibited trafficking of H+-ATPase:green fluorescent protein (GFP) and sialyltransferase (ST):GFP to the plasma membrane and the Golgi apparatus. In addition, Arf1[T31N] caused relocalization of the Golgi reporter protein ST:GFP to the endoplasmic reticulum (ER). In protoplasts expressing Arf1[T31N], ST:red fluorescent protein remained in the ER, whereas H+-ATPase:GFP was mistargeted to another organelle. Also, expression of Arf1[T31N] in protoplasts resulted in profound changes in the morphology of the ER. The treatment of protoplasts with brefeldin A had exactly the same effect as Arf1[T31N] on various intracellular trafficking pathways. In contrast, Arf3[T31N] did not affect trafficking of any of these reporter proteins. Inhibition experiments using mutants with various domains swapped between Arf1 and Arf3 revealed that the N-terminal domain is interchangeable for trafficking inhibition. However, in addition to the T31N mutation, motifs in domains II, III, and IV of Arf1 were necessary for inhibition of trafficking of H+-ATPase:GFP. Together, these results strongly suggest that Arf1 plays a role in the intracellular trafficking of cargo proteins in Arabidopsis, and that Arf1 functions through a brefeldin A-sensitive factor.


The Plant Cell | 2012

A Vacuolar β-Glucosidase Homolog That Possesses Glucose-Conjugated Abscisic Acid Hydrolyzing Activity Plays an Important Role in Osmotic Stress Responses in Arabidopsis

Zheng-Yi Xu; Kwang Hee Lee; Ting Dong; Jae Cheol Jeong; Jing Bo Jin; Yuri Kanno; Dae Heon Kim; Soo Youn Kim; Mitsunori Seo; Ray A. Bressan; Dae-Jin Yun; Inhwan Hwang

This work presents evidence for a novel abscisic acid production pathway involving At-BG2, a β-glucosidase, in the vacuole. This result suggests that abscisic acid is produced in multiple places by multiple pathways in response to abiotic stress. The phytohormone abscisic acid (ABA) plays a critical role in various physiological processes, including adaptation to abiotic stresses. In Arabidopsis thaliana, ABA levels are increased both through de novo biosynthesis and via β-glucosidase homolog1 (BG1)-mediated hydrolysis of Glc-conjugated ABA (ABA-GE). However, it is not known how many different β-glucosidase proteins produce ABA from ABA-GE and how the multiple ABA production pathways are coordinated to increase ABA levels. Here, we report that a previously undiscovered β-glucosidase homolog, BG2, produced ABA by hydrolyzing ABA-GE and plays a role in osmotic stress response. BG2 localized to the vacuole as a high molecular weight complex and accumulated to high levels under dehydration stress. BG2 hydrolyzed ABA-GE to ABA in vitro. In addition, BG2 increased ABA levels in protoplasts upon application of exogenous ABA-GE. Overexpression of BG2 rescued the bg1 mutant phenotype, as observed for the overexpression of NCED3 in bg1 mutants. Multiple Arabidopsis bg2 alleles with a T-DNA insertion in BG2 were more sensitive to dehydration and NaCl stress, whereas BG2 overexpression resulted in enhanced resistance to dehydration and NaCl stress. Based on these observations, we propose that, in addition to the de novo biosynthesis, ABA is produced in multiple organelles by organelle-specific β-glucosidases in response to abiotic stresses.


Nature Cell Biology | 2008

AKR2A-mediated import of chloroplast outer membrane proteins is essential for chloroplast biogenesis

Wonsil Bae; Yong Jik Lee; Dae Heon Kim; Jun Ho Lee; Soo Jin Kim; Eun Ju Sohn; Inhwan Hwang

In plant cells, chloroplasts have essential roles in many biochemical reactions and physiological responses. Chloroplasts require numerous protein components, but only a fraction of these proteins are encoded by the chloroplast genome. Instead, most are encoded by the nuclear genome and imported into chloroplasts from the cytoplasm post-translationally. Membrane proteins located in the chloroplast outer envelope membrane (OEM) have a critical function in the import of proteins into the chloroplast. However, the biogenesis of chloroplast OEM proteins remains poorly understood. Here, we report that an Arabidopsis ankyrin repeat protein, AKR2A, plays an essential role in the biogenesis of the chloroplast OEM proteins. AKR2A binds to chloroplast OEM protein targeting signals, as well as to chloroplasts. It also displays chaperone activity towards chloroplast OEM proteins, and facilitates the targeting of OEP7 to chloroplasts in vitro. AKR2A RNAi in plants with an akr2b knockout background showed greatly reduced levels of chloroplast proteins, including OEM proteins, and chloroplast biogenesis was also defective. Thus, AKR2A functions as a cytosolic mediator for sorting and targeting of nascent chloroplast OEM proteins to the chloroplast.


The Plant Cell | 2013

The Arabidopsis NAC Transcription Factor ANAC096 Cooperates with bZIP-Type Transcription Factors in Dehydration and Osmotic Stress Responses

Zheng-Yi Xu; Soo Youn Kim; Do Young Hyeon; Dae Heon Kim; Ting Dong; Young Min Park; Jing Bo Jin; Se-Hwan Joo; Seong-Ki Kim; Jong Chan Hong; Daehee Hwang; Inhwan Hwang

This work examines the role of the NAC transcription factor ANAC096, finding that ANAC096 interacts with specific bZIP transcription factors to globally affect abscisic acid–responsive transcription during osmotic and drought stresses. Multiple transcription factors (TFs) play essential roles in plants under abiotic stress, but how these multiple TFs cooperate in abiotic stress responses remains largely unknown. In this study, we provide evidence that the NAC (for NAM, ATAF1/2, and CUC2) TF ANAC096 cooperates with the bZIP-type TFs ABRE binding factor and ABRE binding protein (ABF/AREB) to help plants survive under dehydration and osmotic stress conditions. ANAC096 directly interacts with ABF2 and ABF4, but not with ABF3, both in vitro and in vivo. ANAC096 and ABF2 synergistically activate RD29A transcription. Our genome-wide gene expression analysis revealed that a major proportion of abscisic acid (ABA)–responsive genes are under the transcriptional regulation of ANAC096. We found that the Arabidopsis thaliana anac096 mutant is hyposensitive to exogenous ABA and shows impaired ABA-induced stomatal closure and increased water loss under dehydration stress conditions. Furthermore, we found the anac096 abf2 abf4 triple mutant is much more sensitive to dehydration and osmotic stresses than the anac096 single mutant or the abf2 abf4 double mutant. Based on these results, we propose that ANAC096 is involved in a synergistic relationship with a subset of ABFs for the transcriptional activation of ABA-inducible genes in response to dehydration and osmotic stresses.


The Plant Cell | 2013

Adaptor Protein Complex 2–Mediated Endocytosis Is Crucial for Male Reproductive Organ Development in Arabidopsis

Soo Youn Kim; Zheng-Yi Xu; Kyungyoung Song; Dae Heon Kim; Hyangju Kang; Ilka Reichardt; Eun Ju Sohn; Jiří Friml; Gerd Juergens; Inhwan Hwang

Fertilization in flowering plants requires the coordination of many developmental processes. We propose that adaptor protein complex 2–dependent endocytosis plays a crucial role in this coordination by modulating cellular auxin levels through the regulation of the amount and polarity of auxin efflux carriers, such as PIN FORMED2. Fertilization in flowering plants requires the temporal and spatial coordination of many developmental processes, including pollen production, anther dehiscence, ovule production, and pollen tube elongation. However, it remains elusive as to how this coordination occurs during reproduction. Here, we present evidence that endocytosis, involving heterotetrameric adaptor protein complex 2 (AP-2), plays a crucial role in fertilization. An Arabidopsis thaliana mutant ap2m displays multiple defects in pollen production and viability, as well as elongation of staminal filaments and pollen tubes, all of which are pivotal processes needed for fertilization. Of these abnormalities, the defects in elongation of staminal filaments and pollen tubes were partially rescued by exogenous auxin. Moreover, DR5rev:GFP (for green fluorescent protein) expression was greatly reduced in filaments and anthers in ap2m mutant plants. At the cellular level, ap2m mutants displayed defects in both endocytosis of N-(3-triethylammonium-propyl)-4-(4-diethylaminophenylhexatrienyl) pyridinium dibromide, a lypophilic dye used as an endocytosis marker, and polar localization of auxin-efflux carrier PIN FORMED2 (PIN2) in the stamen filaments. Moreover, these defects were phenocopied by treatment with Tyrphostin A23, an inhibitor of endocytosis. Based on these results, we propose that AP-2–dependent endocytosis plays a crucial role in coordinating the multiple developmental aspects of male reproductive organs by modulating cellular auxin level through the regulation of the amount and polarity of PINs.


The Plant Cell | 2003

The Arabidopsis Dynamin-Like Proteins ADL1C and ADL1E Play a Critical Role in Mitochondrial Morphogenesis

Jing Bo Jin; Hyeunjong Bae; Soo Jin Kim; Yin Hua Jin; Chang-Hyo Goh; Dae Heon Kim; Yong Jik Lee; Yu Chung Tse; Liwen Jiang; Inhwan Hwang

Dynamin-related proteins are high molecular weight GTP binding proteins and have been implicated in various biological processes. Here, we report the functional characterization of two dynamin homologs in Arabidopsis, Arabidopsis dynamin-like 1C (ADL1C) and Arabidopsis dynamin-like 1E (ADL1E). ADL1C and ADL1E show a high degree of amino acid sequence similarity with members of the dynamin family. However, both proteins lack the C-terminal Pro-rich domain and the pleckstrin homology domain. Expression of the dominant-negative mutant ADL1C[K48E] in protoplasts obtained from leaf cells caused abnormal mitochondrial elongation. Also, a T-DNA insertion mutation at the ADL1E gene caused abnormal mitochondrial elongation that was rescued by the transient expression of ADL1C and ADL1E in protoplasts. In immunohistochemistry and in vivo targeting experiments in Arabidopsis protoplasts, ADL1C and ADL1E appeared as numerous speckles and the two proteins colocalized. These speckles were partially colocalized with F1-ATPase-γ:RFP, a mitochondrial marker, and ADL2b localized at the tip of mitochondria. These results suggest that ADL1C and ADL1E may play a critical role in mitochondrial fission in plant cells.


Nucleic Acids Research | 2014

The immediate upstream region of the 5′-UTR from the AUG start codon has a pronounced effect on the translational efficiency in Arabidopsis thaliana

Younghyun Kim; Goeun Lee; Eunhyun Jeon; Eun Ju Sohn; Yongjik Lee; Hyangju Kang; Dong Wook Lee; Dae Heon Kim; Inhwan Hwang

The nucleotide sequence around the translational initiation site is an important cis-acting element for post-transcriptional regulation. However, it has not been fully understood how the sequence context at the 5′-untranslated region (5′-UTR) affects the translational efficiency of individual mRNAs. In this study, we provide evidence that the 5′-UTRs of Arabidopsis genes showing a great difference in the nucleotide sequence vary greatly in translational efficiency with more than a 200-fold difference. Of the four types of nucleotides, the A residue was the most favourable nucleotide from positions −1 to −21 of the 5′-UTRs in Arabidopsis genes. In particular, the A residue in the 5′-UTR from positions −1 to −5 was required for a high-level translational efficiency. In contrast, the T residue in the 5′-UTR from positions −1 to −5 was the least favourable nucleotide in translational efficiency. Furthermore, the effect of the sequence context in the −1 to −21 region of the 5′-UTR was conserved in different plant species. Based on these observations, we propose that the sequence context immediately upstream of the AUG initiation codon plays a crucial role in determining the translational efficiency of plant genes.


Plant Cell Reports | 2013

ABA homeostasis and signaling involving multiple subcellular compartments and multiple receptors

Zheng-Yi Xu; Dae Heon Kim; Inhwan Hwang

The plant hormone abscisic acid (ABA) plays pivotal roles in many important physiological processes including stomatal closure, seed dormancy, growth and various environmental stresses. In these responses, ABA action is under the control of complex regulatory mechanisms involving homeostasis, perception and signaling. Recent studies provide new insights into these processes, which are of great importance in understanding the mechanisms underlying the evolutionary principle of how plants can survive as a sessile organism under ever-changing environmental conditions. They also form the basis for designing plants that have an enhanced resistance to various stresses in particular abiotic stress.

Collaboration


Dive into the Dae Heon Kim's collaboration.

Top Co-Authors

Avatar

Inhwan Hwang

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Zheng-Yi Xu

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yong Jik Lee

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jun Ho Lee

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yongjik Lee

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jing Bo Jin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Eun Ju Sohn

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Soo Jin Kim

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Soo Youn Kim

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ting Dong

Pohang University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge