Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dae Yun Seo is active.

Publication


Featured researches published by Dae Yun Seo.


The Korean Journal of Physiology and Pharmacology | 2012

Yoga Training Improves Metabolic Parameters in Obese Boys

Dae Yun Seo; Sung-Ryul Lee; Arturo Figueroa; Hyoung Kyu Kim; Yeong Ho Baek; Yi Sub Kwak; Nari Kim; Tae Hoon Choi; Byoung Doo Rhee; Kyung Soo Ko; Byung Joo Park; Song Young Park; Jin Han

Yoga has been known to have stimulatory or inhibitory effects on the metabolic parameters and to be uncomplicated therapy for obesity. The purpose of the present study was to test the effect of an 8-week of yoga-asana training on body composition, lipid profile, and insulin resistance (IR) in obese adolescent boys. Twenty volunteers with body mass index (BMI) greater than the 95th percentile were randomly assigned to yoga (age 14.7±0.5 years, n=10) and control groups (age 14.6±1.0 years, n=10). The yoga group performed exercises three times per week at 40~60% of heart-rate reserve (HRR) for 8 weeks. IR was determined with the homeostasis model assessment of insulin resistance (HOMA-IR). After yoga training, body weight, BMI, fat mass (FM), and body fat % (BF %) were significantly decreased, and fat-free mass and basal metabolic rate were significantly increased than baseline values. FM and BF % were significantly improved in the yoga group compared with the control group (p<0.05). Total cholesterol (TC) was significantly decreased in the yoga group (p<0.01). HDL-cholesterol was decreased in both groups (p<0.05). No significant changes were observed between or within groups for triglycerides, LDL-cholesterol, glucose, insulin, and HOMA-IR. Our findings show that an 8-week of yoga training improves body composition and TC levels in obese adolescent boys, suggesting that yoga training may be effective in controlling some metabolic syndrome factors in obese adolescent boys.


Pflügers Archiv: European Journal of Physiology | 2012

Non-genomic effect of glucocorticoids on cardiovascular system

Sung Ryul Lee; Hyoung Kyu Kim; Jae Boum Youm; Louise Anne Dizon; In Sung Song; Seung Hun Jeong; Dae Yun Seo; Kyoung Soo Ko; Byoung Doo Rhee; Nari Kim; Jin Han

Glucocorticoids (GCs) are essential steroid hormones for homeostasis, development, metabolism, and cognition and possess anti-inflammatory and immunosuppressive actions. Since glucocorticoid receptor II (GR) is nearly ubiquitous, chronic activation or depletion of GCs leads to dysfunction of diverse organs, including the heart and blood vessels, resulting predominantly from changes in gene expression. Most studies, therefore, have focused on the genomic effects of GC to understand its related pathophysiological manifestations. The nongenomic effects of GCs clearly differ from well-known genomic effects, with the former responding within several minutes without the need for protein synthesis. There is increasing evidence that the nongenomic actions of GCs influence various physiological functions. To develop a GC-mediated therapeutic target for the treatment of cardiovascular disease, understanding the genomic and nongenomic effects of GC on the cardiovascular system is needed. This article reviews our current understanding of the underlying mechanisms of GCs on cardiovascular diseases and stress, as well as how nongenomic GC signaling contributes to these conditions. We suggest that manipulation of GC action based on both GC and GR metabolism, mitochondrial impact, and the action of serum- and glucocorticoid-dependent kinase 1 may provide new information with which to treat cardiovascular diseases.


Nutrition Research and Practice | 2014

Effects of aged garlic extract and endurance exercise on skeletal muscle FNDC-5 and circulating irisin in high-fat-diet rat models

Dae Yun Seo; Hyo Bum Kwak; Sung Ryul Lee; Yeun Suk Cho; In-Sung Song; Nari Kim; Hyun Seok Bang; Byoung Doo Rhee; Kyung Soo Ko; Byung Joo Park; Jin Han

BACKGROUND/OBJECTIVES Irisin, a newly identified hormone, is associated with energy homeostasis. We investigated whether aged garlic extract (AGE) and exercise training intervention could improve body weight, insulin sensitivity, skeletal muscle fibronectin domain containing protein 5 (FNDC-5) levels, and plasma irisin in high-fat diet (HFD). MATERIALS/METHODS Male Sprague Dawley rats were fed a ND (normal diet, n = 5) or HFD (n = 28) for 6 weeks. After 6 weeks, all rats were divided into 5 groups for the next 4 weeks: ND, (normal diet, n = 5), HFD (high-fat diet, n = 7), HFDA (high-fat diet + aged garlic extract, n = 7), HFDE (high-fat diet + exercise, n = 7), and HFDEA (high-fat diet + exercise + aged garlic extract, n = 7). Exercise groups performed treadmill exercises for 15-60 min, 5 days/week, and AGE groups received AGE (2.86 g/kg, orally injected) for 4 weeks. RESULTS Significant decreases in body weight were observed in the ND, HFDE, and HFDEA groups, as compared with the HFD group. Neither intervention affected the masses of the gastrocnemius muscle or liver. There were no significant differences in glucose levels across the groups. The homeostatic model assessments of insulin resistance were significantly higher in the HFD group, as compared with the ND, HFDA, HFDE, and HFDEA groups. However, skeletal muscle FNDC-5 levels and plasma irisin concentrations were unaffected by AGE or exercise in obese rats. AGE supplementation and exercise training did not affect skeletal muscle FNDC-5 or plasma irisin, which are associated with insulin sensitivity in obese rats. CONCLUSION Our results suggest that the protection against HFD-induced increases in body fat/weight and insulin resistance that are provided by AGE supplementation and exercise training may not be mediated by the regulation of FNDC-5 or irisin.


Pflügers Archiv: European Journal of Physiology | 2014

Humanized animal exercise model for clinical implication

Dae Yun Seo; Sung Ryul Lee; Nari Kim; Kyung Soo Ko; Byoung Doo Rhee; Jin Han

Exercise and physical activity function as a patho-physiological process that can prevent, manage, and regulate numerous chronic conditions, including metabolic syndrome and age-related sarcopenia. Because of research ethics and technical difficulties in humans, exercise models using animals are requisite for the future development of exercise mimetics to treat such abnormalities. Moreover, the beneficial or adverse outcomes of a new regime or exercise intervention in the treatment of a specific condition should be tested prior to implementation in a clinical setting. In rodents, treadmill running (or swimming) and ladder climbing are widely used as aerobic and anaerobic exercise models, respectively. However, exercise models are not limited to these types. Indeed, there are no golden standard exercise modes or protocols for managing or improving health status since the types (aerobic vs. anaerobic), time (morning vs. evening), and duration (continuous vs. acute bouts) of exercise are the critical determinants for achieving expected beneficial effects. To provide insight into the understanding of exercise and exercise physiology, we have summarized current animal exercise models largely based on aerobic and anaerobic criteria. Additionally, specialized exercise models that have been developed for testing the effect of exercise on specific physiological conditions are presented. Finally, we provide suggestions and/or considerations for developing a new regime for an exercise model.


The Korean Journal of Physiology and Pharmacology | 2014

Ursolic Acid-Induced Elevation of Serum Irisin Augments Muscle Strength During Resistance Training in Men

Hyun Seok Bang; Dae Yun Seo; Yong Min Chung; Kyoung Mo Oh; Jung Jun Park; Figueroa Arturo; Seung Hun Jeong; Nari Kim; Jin Han

Ursolic acid (UA), a type of pentacyclic triterpenoid carboxylic acid purified from natural plants, can promote skeletal muscle development. We measured the effect of resistance training (RT) with/without UA on skeletal muscle development and related factors in men. Sixteen healthy male participants (age, 29.37±5.14 years; body mass index=27.13±2.16 kg/m2) were randomly assigned to RT (n=7) or RT with UA (RT+UA, n=9) groups. Both groups completed 8 weeks of intervention consisting of 5 sets of 26 exercises, with 10~15 repetitions at 60~80% of 1 repetition maximum and a 60~90-s rest interval between sets, performed 6 times/week. UA or placebo was orally ingested as 1 capsule 3 times/day for 8 weeks. The following factors were measured pre-and post-intervention: body composition, insulin, insulin-like growth factor-1 (IGF-1), irisin, and skeletal muscle strength. Body fat percentage was significantly decreased (p<0.001) in the RT+UA group, despite body weight, body mass index, lean body mass, glucose, and insulin levels remaining unchanged. IGF-1 and irisin were significantly increased compared with baseline levels in the RT+UA group (p<0.05). Maximal right and left extension (p<0.01), right flexion (p<0.05), and left flexion (p<0.001) were significantly increased compared with baseline levels in the RT+UA group. These findings suggest that UA-induced elevation of serum irisin may be useful as an agent for the enhancement of skeletal muscle strength during RT.


Nutrition Research and Practice | 2012

Aged garlic extract enhances exercise-mediated improvement of metabolic parameters in high fat diet-induced obese rats

Dae Yun Seo; Sung-Ryul Lee; Arturo Figueroa; Yi Sub Kwak; Nari Kim; Byoung Doo Rhee; Kyung Soo Ko; Hyun Seok Bang; Yeong Ho Baek; Jin Han

Aged garlic extract (AGE) is known to have a protective effect against immune system, endothelial function, oxidative stress and inflammation. We examined the effects of exercise with and without aged garlic extract administration on body weight, lipid profiles, inflammatory cytokines, and oxidative stress marker in high-fat diet (HFD)-induced obese rats. Forty-five Sprague-Dawley rats were fed either a HFD (HFD, n = 40) or a normal diet (ND, n = 5) for 6 weeks and thereafter randomized into ND (n = 5), HFD (n = 10), HFD with AGE (n = 10), HFD with Exercise (n = 10), or HFD with Exercise+AGE (n = 10) for 4 weeks. AGE groups were administered at a dose of 2.86 g/kg·body weight, orally. Exercise consisted of running 15-60 min 5 days/week with gradually increasing intensity. AGE (P < 0.01), Exercise, and Exercise+AGE (P < 0.001) attenuated body weight gain and food efficiency ratio compared to HFD. Visceral fat and liver weight gain were attenuated (P < 0.05) with all three interventions with a greater effect on visceral fat in the Exercise+AGE than AGE (P < 0.001). In reducing visceral fat (P < 0.001), epididymal fat (P < 0.01) and liver weight (P < 0.001), Exercise+AGE was effective, but exercise showed a stronger suppressive effect than AGE. Exercise+AGE showed further additive effects on reducing visceral fat and liver weight (P < 0.001). AGE significantly attenuated the increase in total cholesterol and low-density lipoprotein-cholesterol compared with HFD (P < 0.05). Exercise+AGE attenuated the increase in triglycerides compared with HFD (P < 0.05). Exercise group significantly decrease in C-reactive protein (P < 0.001). These results suggest that AGE supplementation and exercise alone have anti-obesity, cholesterol lowering, and anti-inflammatory effects, but the combined intervention is more effective in reducing weight gain and triglycerides levels than either intervention alone.


Nutrition Research and Practice | 2013

Combined effects of food and exercise on anaphylaxis.

Cheol Woo Kim; Arturo Figueroa; Chan Ho Park; Yi Sub Kwak; Kwi Baek Kim; Dae Yun Seo; Hyung Rock Lee

Food-dependent exercise-induced anaphylaxis (FDEIAn) is induced by different types and various intensities of physical activity, and is distinct from food allergies. It has been shown that consumption of allergenic food followed by exercise causes FDEIAn symptoms. Intake of allergenic food or medication before exercise is a major predisposing factor for FDEIAn. Urticaria and severe allergic reactions are general symptoms of FDEIAn. Dermatological tests and serum IgE assays are the typical prescreening methods, and have been used for several decades. However, these screening tests are not sufficient for detecting or preventing FDEIAn. It has been found that exercise may stimulate the release of mediators from IgE-dependent mast cells that can result in FDEIAn when a certain threshold level has been exceeded. Mast cell degradation might be a major factor to induce FDEIAn but this has not been determined. A number of foods have been reported to be involved in the onset of FDEIAn including wheat, eggs, chicken, shrimp, shellfish, nuts, fruits, and vegetables. It is also known that aspirin increases the occurrence of type I allergy symptoms when combined with specific foods. Moreover, high intensity and frequent exercise are more likely to provoke an attack than low intensity and less frequent exercise. In this paper, we present the current views of the pathophysiological mechanisms underlying FDEIAn within the context of exercise immunology. We also present a detailed FDEIAn definition along with etiologic factors and medical treatment for cholinergic urticaria (UC) and exercise-induced anaphylaxis (EIA).


Integrative medicine research | 2016

Age-related changes in skeletal muscle mitochondria: the role of exercise

Dae Yun Seo; Sung Ryul Lee; Nari Kim; Kyung Soo Ko; Byoung Doo Rhee; Jin Han

Aging is associated with mitochondrial dysfunction, which leads to a decline in cellular function and the development of age-related diseases. Reduced skeletal muscle mass with aging appears to promote a decrease in mitochondrial quality and quantity. Moreover, mitochondrial dysfunction adversely affects the quality and quantity of skeletal muscle. During aging, physical exercise can cause beneficial adaptations to cellular energy metabolism in skeletal muscle, including alterations to mitochondrial content, protein, and biogenesis. Here, we briefly summarize current findings on the association between the aging process and impairment of mitochondrial function, including mitochondrial biogenesis and reactive oxygen species in skeletal muscle. We also discuss the potential role of exercise in the improvement of aging-driven mitochondrial dysfunctions.


Nutrition Research and Practice | 2012

Independent beneficial effects of aged garlic extract intake with regular exercise on cardiovascular risk in postmenopausal women

Dae Yun Seo; Sung Ryul Lee; Hyoung Kyu Kim; Yeong Ho Baek; Yi Sub Kwak; Tae Hee Ko; Nari Kim; Byoung Doo Rhee; Kyoung Soo Ko; Byung Joo Park; Jin Han

The purpose of the study was to assess the effects of a 12 weeks aged garlic extract (AGE) regimen with regular exercise on cardiovascular disease (CVD) risk in postmenopausal women. A total of 30 postmenopausal women (54.4 ± 5.4 years) were randomly divided into the following four groups: Placebo (Placebo; n = 6), AGE intake (AGEI; n = 8), exercise and placebo (Ex + Placebo; n = 8), exercise and AGE (Ex + AGE; n = 8) groups. The AGE group consume 80 mg per day, and exercise groups performed moderate exercise (aerobic and resistance) three times per week. After 12 weeks of treatment, body composition, lipid profile, and CVD risk factors were analyzed. Body weight was significantly decreased in AGEI, Ex + Placebo, and Ex + AGE groups compared to baseline. Body fat % was significantly decreased in the AGEI and Ex + Placebo groups. Body mass index (BMI) was significantly decreased in the AGEI, Ex + Placebo, and Ex + AGE groups. Fat-free mass was significantly decreased in the AGEI group. Total cholesterol (TC) was significantly lower in the Ex + Placebo compared to the Placebo group. AGE supplementation or exercise effectively reduced low-density lipoprotein (LDL-C). Triglyceride (TG) was significantly increased in the AGEI group. Malondialdehyde (MDA) levels were significantly decreased in the AGEI, Ex + Placebo, and Ex + AGE compared to the placebo group. AGE supplementation reduced homocysteine levels regardless of whether the women also exercised. The present results suggest that AGE supplementation reduces cardiovascular risk factors independently of exercise in postmenopausal women.


The Korean Journal of Physiology and Pharmacology | 2016

Voluntary stand-up physical activity enhances endurance exercise capacity in rats

Dae Yun Seo; Sung Ryul Lee; Hyo Bum Kwak; Kyo Won Seo; Robin A. McGregor; Ji Young Yeo; Tae Hee Ko; Saranhuu Bolorerdene; Nari Kim; Kyung Soo Ko; Byoung Doo Rhee; Jin Han

Involuntary physical activity induced by the avoidance of electrical shock leads to improved endurance exercise capacity in animals. However, it remains unknown whether voluntary stand-up physical activity (SPA) without forced simulating factors improves endurance exercise capacity in animals. We examined the eff ects of SPA on body weight, cardiac function, and endurance exercise capacity for 12 weeks. Twelve male Sprague-Dawley rats (aged 8 weeks, n=6 per group) were randomly assigned to a control group (CON) or a voluntary SPA group. The rats were induced to perform voluntary SPA (lifting a load equal to their body weight), while the food height (18.0 cm) in cages was increased progressively by 3.5 every 4 weeks until it reached 28.5 cm for 12 weeks. The SPA group showed a lower body weight compared to the CON group, but voluntary SPA did not affect the skeletal muscle and heart weights, food intake, and echocardiography results. Although the SPA group showed higher grip strength, running time, and distance compared to the CON group, the level of irisin, corticosterone, genetic expression of mitochondrial biogenesis, and nuclei numbers were not affected. These findings show that voluntary SPA without any forced stimuli in rats can eff ectively reduce body weight and enhance endurance exercise capacity, suggesting that it may be an important alternative strategy to enhance endurance exercise capacity.

Collaboration


Dive into the Dae Yun Seo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyun Seok Bang

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge