Daehan Yoo
University of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daehan Yoo.
Nano Letters | 2014
Avijit Barik; Lauren M. Otto; Daehan Yoo; Jincy Jose; Timothy W. Johnson; Sang Hyun Oh
We experimentally demonstrate dielectrophoretic concentration of biological analytes on the surface of a gold nanohole array, which concurrently acts as a nanoplasmonic sensor and gradient force generator. The combination of nanohole-enhanced dielectrophoresis, electroosmosis, and extraordinary optical transmission through the periodic gold nanohole array enables real-time label-free detection of analyte molecules in a 5 μL droplet using concentrations as low as 1 pM within a few minutes, which is more than 1000 times faster than purely diffusion-based binding. The nanohole-based optofluidic platform demonstrated here is straightforward to construct, applicable to both charged and neutral molecules, and performs a novel function that cannot be accomplished using conventional surface plasmon resonance sensors.
Nano Letters | 2016
O. Limaj; Dordaneh Etezadi; Nathan J. Wittenberg; Daniel Rodrigo; Daehan Yoo; Sang Hyun Oh; Hatice Altug
In this work, we present an infrared plasmonic biosensor for chemical-specific detection and monitoring of biomimetic lipid membranes in a label-free and real-time fashion. Lipid membranes constitute the primary biological interface mediating cell signaling and interaction with drugs and pathogens. By exploiting the plasmonic field enhancement in the vicinity of engineered and surface-modified nanoantennas, the proposed biosensor is able to capture the vibrational fingerprints of lipid molecules and monitor in real time the formation kinetics of planar biomimetic membranes in aqueous environments. Furthermore, we show that this plasmonic biosensor features high-field enhancement extending over tens of nanometers away from the surface, matching the size of typical bioassays while preserving high sensitivity.
Nano Letters | 2016
Daehan Yoo; Ngoc Cuong Nguyen; Luis Martín-Moreno; Daniel A. Mohr; Sol Carretero-Palacios; Jonah Shaver; Jaime Peraire; Thomas W. Ebbesen; Sang Hyun Oh
We combine atomic layer lithography and glancing-angle ion polishing to create wafer-scale metamaterials composed of dense arrays of ultrasmall coaxial nanocavities in gold films. This new fabrication scheme makes it possible to shrink the diameter and increase the packing density of 2 nm-gap coaxial resonators, an extreme subwavelength structure first manufactured via atomic layer lithography, both by a factor of 100 with respect to previous studies. We demonstrate that the nonpropagating zeroth-order Fabry-Pérot mode, which possesses slow light-like properties at the cutoff resonance, traps infrared light inside 2 nm gaps (gap volume ∼ λ3/106). Notably, the annular gaps cover only 3% or less of the metal surface, while open-area normalized transmission is as high as 1700% at the epsilon-near-zero (ENZ) condition. The resulting energy accumulation alongside extraordinary optical transmission can benefit applications in nonlinear optics, optical trapping, and surface-enhanced spectroscopies. Furthermore, because the resonance wavelength is independent of the cavity length and dramatically red shifts as the gap size is reduced, large-area arrays can be constructed with λresonance ≫ period, making this fabrication method ideal for manufacturing resonant metamaterials.
ACS Nano | 2015
Daehan Yoo; Timothy W. Johnson; Sudhir Cherukulappurath; David J. Norris; Sang Hyun Oh
We use template stripping to integrate metallic nanostructures onto flexible, stretchable, and rollable substrates. Using this approach, high-quality patterned metals that are replicated from reusable silicon templates can be directly transferred to polydimethylsiloxane (PDMS) substrates. First we produce stretchable gold nanohole arrays and show that their optical transmission spectra can be modulated by mechanical stretching. Next we fabricate stretchable arrays of gold pyramids and demonstrate a modulation of the wavelength of light resonantly scattered from the tip of the pyramid by stretching the underlying PDMS film. The use of a flexible transfer layer also enables template stripping using a cylindrical roller as a substrate. As an example, we demonstrate roller template stripping of metallic nanoholes, nanodisks, wires, and pyramids onto the cylindrical surface of a glass rod lens. These nonplanar metallic structures produced via template stripping with flexible and stretchable films can facilitate many applications in sensing, display, plasmonics, metasurfaces, and roll-to-roll fabrication.
Nano Letters | 2017
Che Chen; Nathan Youngblood; Ruoming Peng; Daehan Yoo; Daniel A. Mohr; Timothy W. Johnson; Sang Hyun Oh; Mo Li
We demonstrate the integration of a black phosphorus photodetector in a hybrid, three-dimensional architecture of silicon photonics and metallic nanoplasmonics structures. This integration approach combines the advantages of the low propagation loss of silicon waveguides, high-field confinement of a plasmonic nanogap, and the narrow bandgap of black phosphorus to achieve high responsivity for detection of telecom-band, near-infrared light. Benefiting from an ultrashort channel (∼60 nm) and near-field enhancement enabled by the nanogap structure, the photodetector shows an intrinsic responsivity as high as 10 A/W afforded by internal gain mechanisms, and a 3 dB roll-off frequency of 150 MHz. This device demonstrates a promising approach for on-chip integration of three distinctive photonic systems, which, as a generic platform, may lead to future nanophotonic applications for biosensing, nonlinear optics, and optical signal processing.
Disease Models & Mechanisms | 2015
Xiaohua Xu; Aleksandar Denic; Luke R. Jordan; Nathan J. Wittenberg; Arthur E. Warrington; Bharath Wootla; Louisa Papke; Laurie Zoecklein; Daehan Yoo; Jonah Shaver; Sang Hyun Oh; Larry R. Pease; Moses Rodriguez
ABSTRACT Amyotrophic lateral sclerosis (ALS) is a devastating, fatal neurological disease that primarily affects spinal cord anterior horn cells and their axons for which there is no treatment. Here we report the use of a recombinant natural human IgM that binds to the surface of neurons and supports neurite extension, rHIgM12, as a therapeutic strategy in murine models of human ALS. A single 200 µg intraperitoneal dose of rHIgM12 increases survival in two independent genetic-based mutant SOD1 mouse strains (SOD1G86R and SOD1G93A) by 8 and 10 days, delays the onset of neurological deficits by 16 days, delays the onset of weight loss by 5 days, and preserves spinal cord axons and anterior horn neurons. Immuno-overlay of thin layer chromatography and surface plasmon resonance show that rHIgM12 binds with high affinity to the complex gangliosides GD1a and GT1b. Addition of rHIgM12 to neurons in culture increases α-tubulin tyrosination levels, suggesting an alteration of microtubule dynamics. We previously reported that a single peripheral dose of rHIgM12 preserved neurological function in a murine model of demyelination with axon loss. Because rHIgM12 improves three different models of neurological disease, we propose that the IgM might act late in the cascade of neuronal stress and/or death by a broad mechanism. Summary: A single peripheral dose of a recombinant natural human IgM increases lifespan and delays neurological deficits in mouse models of human ALS.
Small | 2016
Joshua A. Jackman; Eric Linardy; Daehan Yoo; Jeongeun Seo; Wei Beng Ng; Daniel J. Klemme; Nathan J. Wittenberg; Sang Hyun Oh; Nam-Joon Cho
A plasmonic nanohole sensor for virus-like particle capture and virucidal drug evaluation is reported. Using a materials-selective surface functionalization scheme, passive immobilization of virus-like particles only within the nanoholes is achieved. The findings demonstrate that a low surface coverage of particles only inside the functionalized nanoholes significantly improves nanoplasmonic sensing performance over conventional nanohole arrays.
Journal of the American Chemical Society | 2015
Yong Sang Ryu; Daehan Yoo; Nathan J. Wittenberg; Luke R. Jordan; Sin-Doo Lee; Atul N. Parikh; Sang Hyun Oh
During vesicle budding or endocytosis, biomembranes undergo a series of lipid- and protein-mediated deformations involving cholesterol-enriched lipid rafts. If lipid rafts of high bending rigidities become confined to the incipient curved membrane topology such as a bud-neck interface, they can be expected to reform as ring-shaped rafts. Here, we report on the observation of a disk-to-ring shape morpho-chemical transition of a model membrane in the absence of geometric constraints. The raft shape transition is triggered by lateral compositional heterogeneity and is accompanied by membrane deformation in the vertical direction, which is detected by height-sensitive fluorescence interference contrast microscopy. Our results suggest that a flat membrane can become curved simply by dynamic changes in local chemical composition and shape transformation of cholesterol-rich domains.
Nano Letters | 2018
Daehan Yoo; Kargal L. Gurunatha; Han-Kyu Choi; Daniel A. Mohr; Christopher T. Ertsgaard; Reuven Gordon; Sang Hyun Oh
We present optical trapping with a 10 nm gap resonant coaxial nanoaperture in a gold film. Large arrays of 600 resonant plasmonic coaxial nanoaperture traps are produced on a single chip via atomic layer lithography with each aperture tuned to match a 785 nm laser source. We show that these single coaxial apertures can act as efficient nanotweezers with a sharp potential well, capable of trapping 30 nm polystyrene nanoparticles and streptavidin molecules with a laser power as low as 4.7 mW. Furthermore, the resonant coaxial nanoaperture enables real-time label-free detection of the trapping events via simple transmission measurements. Our fabrication technique is scalable and reproducible, since the critical nanogap dimension is defined by atomic layer deposition. Thus our platform shows significant potential to push the limit of optical trapping technologies.
Nature Communications | 2018
Daniel Rodrigo; Andreas Tittl; Nadine Ait-Bouziad; Aurelian John-Herpin; O. Limaj; Christopher Kelly; Daehan Yoo; Nathan J. Wittenberg; Sang Hyun Oh; Hilal A. Lashuel; Hatice Altug
A multitude of biological processes are enabled by complex interactions between lipid membranes and proteins. To understand such dynamic processes, it is crucial to differentiate the constituent biomolecular species and track their individual time evolution without invasive labels. Here, we present a label-free mid-infrared biosensor capable of distinguishing multiple analytes in heterogeneous biological samples with high sensitivity. Our technology leverages a multi-resonant metasurface to simultaneously enhance the different vibrational fingerprints of multiple biomolecules. By providing up to 1000-fold near-field intensity enhancement over both amide and methylene bands, our sensor resolves the interactions of lipid membranes with different polypeptides in real time. Significantly, we demonstrate that our label-free chemically specific sensor can analyze peptide-induced neurotransmitter cargo release from synaptic vesicle mimics. Our sensor opens up exciting possibilities for gaining new insights into biological processes such as signaling or transport in basic research as well as provides a valuable toolkit for bioanalytical and pharmaceutical applications.Complex protein-lipid interactions are difficult to study in real-time without labels. Here, Rodrigo et al. introduce a multimodal plasmonic infrared biosensor to simultaneously distinguish multiple analytes with high sensitivity.