Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daeyoup Lee is active.

Publication


Featured researches published by Daeyoup Lee.


Science | 2007

Combined Action of PHD and Chromo Domains Directs the Rpd3S HDAC to Transcribed Chromatin

Bing Li; Madelaine Gogol; Michael Carey; Daeyoup Lee; Chris Seidel; Jerry L. Workman

Nucleosomes must be deacetylated behind elongating RNA polymerase II to prevent cryptic initiation of transcription within the coding region. RNA polymerase II signals for deacetylation through the methylation of histone H3 lysine 36 (H3K36), which provides the recruitment signal for the Rpd3S histone deacetylase complex (HDAC). The recognition of methyl H3K36 by Rpd3S requires the chromodomain of its Eaf3 subunit. Paradoxically, Eaf3 is also a subunit of the NuA4 acetyltransferase complex, yet NuA4 does not recognize methyl H3K36 nucleosomes. In Saccharomyces cerevisiae, we found that methyl H3K36 nucleosome recognition by Rpd3S also requires the plant homeobox domain (PHD) of its Rco1 subunit. Thus, the coupled chromo and PHD domains of Rpd3S specify recognition of the methyl H3K36 mark, demonstrating the first combinatorial domain requirement within a protein complex to read a specific histone code.


Cell | 2005

The Proteasome Regulatory Particle Alters the SAGA Coactivator to Enhance Its Interactions with Transcriptional Activators

Daeyoup Lee; Elena Ezhkova; Bing Li; Samantha G. Pattenden; William P. Tansey; Jerry L. Workman

Promoter recruitment of the Saccharomyces cerevisiae SAGA histone acetyltransferase complex is required for RNA polymerase II-dependent transcription of several genes. SAGA is targeted to promoters through interactions with sequence-specific DNA binding transcriptional activators and facilitates preinitiation-complex assembly and transcription. Here, we show that the 19S proteasome regulatory particle (19S RP) alters SAGA to stimulate its interaction with transcriptional activators. The ATPase components of the 19S RP are required for stimulation of SAGA/activator interactions and enhance SAGA recruitment to promoters. Proteasomal ATPases genetically interact with SAGA, and their inhibition reduces global histone H3 acetylation levels and SAGA recruitment to target promoters in vivo. These results indicate that the 19S RP modulates SAGA complex using its ATPase components, thereby facilitating subsequent transcription events at promoters.


Journal of Virology | 2002

Functional Dissection of Latency-Associated Nuclear Antigen 1 of Kaposi's Sarcoma-Associated Herpesvirus Involved in Latent DNA Replication and Transcription of Terminal Repeats of the Viral Genome

Chunghun Lim; Hekwang Sohn; Daeyoup Lee; Yousang Gwack; Joonho Choe

ABSTRACT Latency-associated nuclear antigen 1 (LANA1) of Kaposis sarcoma-associated herpesvirus (KSHV) is implicated in the maintenance of the viral genome during latent infection. LANA1 colocalizes with KSHV episomes on the host chromosome and mediates their maintenance by attaching these viral structures to host chromosomes. Data from long-term selection of drug resistance in cells conferred by plasmids containing the terminal repeat (TR) sequence of KSHV revealed that KSHV TRs and LANA1 act as cis and trans elements of viral latent replication, respectively. In this study, we further characterized the cis- and trans-acting elements of KSHV latent replication by using a transient replication assay with a methylation-sensitive restriction enzyme, DpnI. Transient reporter and replication assays disclosed that the orientation and basal transcriptional activity of TR constructs did not significantly affect the efficiency of replication. However, at least two TR units were necessary for efficient replication. The N-terminal 90 amino acids comprising the chromosome-binding domain of LANA1 were required for the mediation of LANA1 C-terminal DNA-binding and dimerization domains to support the transient replication of KSHV TRs. LANA1 interacted with components of the origin recognition complexes (ORCs), similar to Epstein-Barr virus nuclear antigen 1. Our data suggest that LANA1 recruits ORCs to KSHV TRs for latent replication of the viral genome.


Nature | 1999

Interaction of E1 and hSNF5 proteins stimulates replication of human papillomavirus DNA

Daeyoup Lee; Hekwang Sohn; Ganjam V. Kalpana; Joonho Choe

Mammalian viruses often use components of the hosts cellular DNA replication machinery to carry out replication of their genomes, which enables these viruses to be used as tools for characterizing factors that are involved in cellular DNA replication. The human papillomavirus (HPV) E1 protein is essential for replication of the virus DNA. Here we identify the cellular factor that participates in viral DNA replication by using a two-hybrid assay in the yeast Saccharomyces cerevisiae and E1 protein as bait. Using this assay, we isolated Ini1/hSNF5 (ref. 5), a component of the SWI/SNF complex which facilitates transcription by altering the structure of chromatin. In vitro binding and immunoprecipitation confirmed that E1 interacts directly with Ini1/hSNF5. Transient DNA-replication assay revealed that HPV DNA replication is stimulated in a dose-dependent manner by addition of Ini1/hSNF5, and that Ini1/hSNF5 antisense RNA blocks the replication of HPV DNA. Amino-acid substitution at residues that are conserved among E1 proteins prevented the E1-Ini1/hSNF5 interaction and reduced DNA replication of HPV in vivo. Our results indicate that Ini1/hSNF5 is required for the efficient replication of papillomavirus DNA and is therefore needed, either alone or in complex with SWI/SNF complex, for mammalian DNA replication as well.


Journal of Virology | 2001

Viral Interferon Regulatory Factor 1 of Kaposi's Sarcoma-Associated Herpesvirus Binds to p53 and Represses p53-Dependent Transcription and Apoptosis

Taegun Seo; Junsoo Park; Daeyoup Lee; Sun Gwan Hwang; Joonho Choe

ABSTRACT Kaposis sarcoma-associated herpesvirus (KSHV) is related to the development of Kaposis sarcoma. Open reading frame K9 of KSHV encodes viral interferon regulatory factor 1 (vIRF1), which functions as a repressor of interferon- and IRF1-mediated signal transduction. In addition, vIRF1 acts as an oncogene to induce cellular transformation. Here we show that vIRF1 directly associates with the tumor suppressor p53 and represses its functions. The vIRF1 interaction domains of p53 are the DNA binding domain (amino acids [aa] 100 to 300) and the tetramerization domain (aa 300 to 393). p53 interacts with the central region (aa 152 to 360) of vIRF1. vIRF1 suppresses p53-dependent transcription and deregulates its apoptotic activity. These results suggest that vIRF1 may regulate cellular function by inhibiting p53.


Journal of Biological Chemistry | 2000

cAMP Response Element-binding Protein-binding Protein Binds to Human Papillomavirus E2 Protein and Activates E2-dependent Transcription

Daeyoup Lee; Bona Lee; Jiyun Kim; Dong Wook Kim; Joonho Choe

cAMP response element-binding protein-binding protein (CBP) is a eucaryotic transcriptional co-activator that contains multiple protein-protein interaction domains for association with various transcription factors, components of the basal transcriptional apparatus, and other co-activator proteins. Here, we report that CBP is also a co-activator of the human papillomavirus (HPV) E2 protein, which is a sequence-specific transcription/replication factor. We provide biochemical, genetic, and functional evidence that CBP binds directly to HPV E2 in vivo and in vitro and activates E2-dependent transcription. Mutations in an amphipathic helix within HPV-18 E2 abolish its transcriptional activation properties and its ability to bind to CBP. Furthermore, the binding of CBP to E2 was shown to be necessary for E2-dependent transcription. Interestingly, the histone acetyltransferase activity of CBP plays a role in CBP activation of E2-dependent transcription.


Plant Journal | 2009

Histone occupancy-dependent and -independent removal of H3K27 trimethylation at cold-responsive genes in Arabidopsis.

Chang Seob Kwon; Daeyoup Lee; Giltsu Choi; Won Il Chung

Trimethylation of histone H3 at lysine 27 (H3K27me3) is a histone marker that is present in inactive gene loci in both plants and animals. Transcription of some of the genes with H3K27me3 should be induced by internal or external cues, yet the dynamic fate of H3K27me3 in these genes during transcriptional regulation is poorly understood in plants. Here we show that H3K27me3 in two cold-responsive genes, COR15A and ATGOLS3, decreases gradually in Arabidopsis during exposure to cold temperatures. We found that removal of H3K27me3 can occur by both histone occupancy-dependent and -independent mechanisms. Upon cold exposure, histone H3 levels decreased in the promoter regions of COR15A and ATGOLS3 but not in their transcribed regions. When we returned cold-exposed plants to normal growth conditions, transcription of COR15A and ATGOLS3 was completely repressed to the initial level before cold exposure in 1 day. In contrast, plants still maintained the cold-triggered decrease in H3K27me3 at COR15A and ATGOLS3, but this decrease did not enhance transcriptional induction of the two genes upon re-exposure to cold. Taken together, these results indicate that gene activation is not inhibited by H3K27me3 itself but rather leads to removal of H3K27me3, and that H3K27me3 can be inherited at a quantitative level, thereby serving as a memory marker for recent transcriptional activity in Arabidopsis.


Journal of Virology | 2002

Viral Interferon Regulatory Factor 1 of Kaposi's Sarcoma-Associated Herpesvirus Interacts with a Cell Death Regulator, GRIM19, and Inhibits Interferon/Retinoic Acid-Induced Cell Death

Taegun Seo; Daeyoup Lee; Young Sam Shim; Jon E. Angell; Natesa V. Chidambaram; Dhananjaya V. Kalvakolanu; Joonho Choe

ABSTRACT Kaposis sarcoma-associated herpesvirus (KSHV) plays a significant role in the development of Kaposis sarcoma, primary effusion lymphoma, and some forms of multicentric Castlemans disease. The KSHV open reading frame K9 encodes the viral interferon (IFN) factor 1 (vIRF1), which downregulates IFN- and IRF-mediated transcriptional activation, and leads to cellular transformation in rodent fibroblasts and induction of tumors in nude mice. Using the yeast two-hybrid assay, we identified genes associated with retinoid-IFN-induced mortality-19 (GRIM19), which interacts directly with vIRF1, both in vivo and in vitro. The N-terminal region of vIRF1 is required for binding GRIM19. Colocalization of vIRF1 and GRIM19 was observed in 293T cells. The vIRF1 protein deregulates GRIM19-induced apoptosis in the presence of IFN/all-trans-retinoic acid (RA) and inhibits IFN/RA-induced cell death. Another DNA tumor viral protein, human papillomavirus type 16 E6, also binds GRIM19, suggesting that this is a general target of viral proteins. Our results collectively indicate that vIRF1 modulates IFN/RA-cell death signals via interactions with GRIM19.


Plant Journal | 2009

Arabidopsis ING and Alfin1-like protein families localize to the nucleus and bind to H3K4me3/2 via plant homeodomain fingers.

Woo Yong Lee; Daeyoup Lee; Won-Il Chung; Chang Seob Kwon

In yeast and animals, tri- and dimethylation of histone H3 at lysine 4 (H3K4me3/2) are markers of transcriptionally active genes that have recently been shown to be primary ligands for the plant homeodomain (PHD) finger. However, PHD fingers able to bind to H3K4me3/2 have not been identified in plants. Here, we identify 83 canonical PHD fingers in the Arabidopsis proteome database that are supported by both SMART and Pfam prediction. Among these, we focus on PHD fingers in ING (inhibitor of growth) homologues (AtING) and Alfin1-like (AL) proteins, which are highly similar to those in human ING2 and bromodomain PHD finger transcription factor (BPTF), based on predicted tertiary structures. ING proteins are found in yeast, animals and plants, whereas AL proteins exist only in plants. In vitro binding experiments indicated that PHD fingers in AtING and AL proteins in Arabidopsis can bind to H3K4me3, and, to a lesser extent, to H3K4me2. In addition, mutational analysis confirmed that a predicted aromatic cage and a specific conserved acidic residue are both crucial for binding to H3K4me3/2. Finally, we demonstrate that AtING and AL proteins are nuclear proteins that are expressed in various tissues of the Arabidopsis plant. Thus, we propose that ING and AL proteins are nuclear proteins that are involved in chromatin regulation by binding to H3K4me3/2, the active histone markers, in plants.


Journal of Virology | 2000

The K-bZIP Protein from Kaposi's Sarcoma-Associated Herpesvirus Interacts with p53 and Represses Its Transcriptional Activity

Junsoo Park; Taegun Seo; Seungmin Hwang; Daeyoup Lee; Yousang Gwack; Joonho Choe

ABSTRACT Kaposis sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that has been implicated in the pathogenesis of Kaposis sarcoma. KSHV encodes K-bZIP (open reading frame K8), a protein that belongs to the basic region-leucine zipper (bZIP) family of transcription factors. Here we show that K-bZIP associates with the cellular transcription factor p53 directly in vitro and in vivo. This interaction requires the bZIP domain of K-bZIP and the carboxy-terminal region (amino acids 300 to 393) of p53. We also show that K-bZIP represses the transcriptional activity of p53 which is required for apoptosis of the host cell. These results imply that K-bZIP blocks p53-mediated host cell death through its interaction with p53.

Collaboration


Dive into the Daeyoup Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mirang Kim

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Researchain Logo
Decentralizing Knowledge