Dafydd R. Owen
Pfizer
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dafydd R. Owen.
Nature Chemical Biology | 2015
C.H. Arrowsmith; James E. Audia; Christopher M. Austin; Jonathan B. Baell; Jonathan Bennett; Julian Blagg; C. Bountra; Paul E. Brennan; Peter J. Brown; Mark Edward Bunnage; Carolyn Buser-Doepner; Robert M. Campbell; Adrian Carter; Philip Cohen; Robert A. Copeland; Ben Cravatt; Jayme L. Dahlin; Dashyant Dhanak; A. Edwards; Mathias Frederiksen; Stephen V. Frye; Nathanael S. Gray; Charles E. Grimshaw; David Hepworth; Trevor Howe; Kilian Huber; Jian Jin; Stefan Knapp; Joanne Kotz; Ryan G. Kruger
Chemical probes are powerful reagents with increasing impacts on biomedical research. However, probes of poor quality or that are used incorrectly generate misleading results. To help address these shortcomings, we will create a community-driven wiki resource to improve quality and convey current best practice.
Bioorganic & Medicinal Chemistry Letters | 2009
Thomas Ryckmans; Martin Paul Edwards; Val A. Horne; Ana Monica Correia; Dafydd R. Owen; Lisa R. Thompson; Isabelle Tran; Michelle F. Tutt; Tim Young
A series of libraries were designed using the 1-(cyclopropylmethyl)-2-alkyl-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridin-5-ium templates 2a-b, and Sulfonamide derivatives 11a-n proved to be potent agonists of the CB(2) receptor. Analysis of the Lipophilic Efficiency (LipE) of potent compounds provided new insight for the design of potent, metabolically stable CB2 agonists.
Cancer Research | 2013
Sarah Picaud; David Da Costa; Angeliki Thanasopoulou; Panagis Filippakopoulos; Paul V. Fish; Martin Philpott; Oleg Fedorov; Paul E. Brennan; Mark Edward Bunnage; Dafydd R. Owen; James E. Bradner; Phillippe Taniere; Brendan O'Sullivan; Susanne Müller; Juerg Schwaller; Tatjana Stankovic; Stefan Knapp
Bromo and extra terminal (BET) proteins (BRD2, BRD3, BRD4, and BRDT) are transcriptional regulators required for efficient expression of several growth promoting and antiapoptotic genes as well as for cell-cycle progression. BET proteins are recruited on transcriptionally active chromatin via their two N-terminal bromodomains (BRD), a protein interaction module that specifically recognizes acetylated lysine residues in histones H3 and H4. Inhibition of the BET-histone interaction results in transcriptional downregulation of a number of oncogenes, providing a novel pharmacologic strategy for the treatment of cancer. Here, we present a potent and highly selective dihydroquinazoline-2-one inhibitor, PFI-1, which efficiently blocks the interaction of BET BRDs with acetylated histone tails. Cocrystal structures showed that PFI-1 acts as an acetyl-lysine (Kac) mimetic inhibitor efficiently occupying the Kac binding site in BRD4 and BRD2. PFI-1 has antiproliferative effects on leukemic cell lines and efficiently abrogates their clonogenic growth. Exposure of sensitive cell lines with PFI-1 results in G1 cell-cycle arrest, downregulation of MYC expression, as well as induction of apoptosis and induces differentiation of primary leukemic blasts. Intriguingly, cells exposed to PFI-1 showed significant downregulation of Aurora B kinase, thus attenuating phosphorylation of the Aurora substrate H3S10, providing an alternative strategy for the specific inhibition of this well-established oncology target.
Journal of Medicinal Chemistry | 2012
Paul V. Fish; Panagis Filippakopoulos; Gerwyn Bish; Paul E. Brennan; Mark Edward Bunnage; Andrew Simon Cook; Oleg Federov; Brian S. Gerstenberger; Hannah M. Jones; Stefan Knapp; Brian D. Marsden; Karl H. Nocka; Dafydd R. Owen; Martin Philpott; Sarah Picaud; Michael J. Primiano; Michael Ralph; Nunzio Sciammetta; John David Trzupek
The posttranslational modification of chromatin through acetylation at selected histone lysine residues is governed by histone acetyltransferases (HATs) and histone deacetylases (HDACs). The significance of this subset of the epigenetic code is interrogated and interpreted by an acetyllysine-specific protein–protein interaction with bromodomain reader modules. Selective inhibition of the bromo and extra C-terminal domain (BET) family of bromodomains with a small molecule is feasible, and this may represent an opportunity for disease intervention through the recently disclosed antiproliferative and anti-inflammatory properties of such inhibitors. Herein, we describe the discovery and structure–activity relationship (SAR) of a novel, small-molecule chemical probe for BET family inhibition that was identified through the application of structure-based fragment assessment and optimization techniques. This has yielded a potent, selective compound with cell-based activity (PFI-1) that may further add to the understanding of BET family function within the bromodomains.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Dalia Barsyte-Lovejoy; Fengling Li; Menno J. Oudhoff; John Howard Tatlock; Aiping Dong; Hong Zeng; Hong Wu; Spencer A. Freeman; Matthieu Schapira; Guillermo Senisterra; Ekaterina Kuznetsova; Richard Marcellus; Abdellah Allali-Hassani; Steven Kennedy; Jean-Philippe Lambert; Amber L. Couzens; Ahmed Aman; Anne-Claude Gingras; Rima Al-awar; Paul V. Fish; Brian S. Gerstenberger; Lee R. Roberts; Caroline L. Benn; Rachel L. Grimley; Mitchell J.S. Braam; Fabio Rossi; Marius Sudol; Peter J. Brown; Mark Edward Bunnage; Dafydd R. Owen
Significance Protein methyltransferases constitute an emerging but undercharacterized class of therapeutic targets with diverse roles in normal human biology and disease. Small-molecule “chemical probes” can be powerful tools for the functional characterization of such enzymes, and here we report the discovery of (R)-PFI-2—a first-in-class, potent, highly selective, and cell-active inhibitor of the methyltransferase activity of SETD7 [SET domain containing (lysine methyltransferase) 7]—and two related compounds for control and chemoproteomics studies. We used these compounds to characterize the role of SETD7 in signaling, in the Hippo pathway, that controls cell growth and organ size. Our work establishes a chemical biology tool kit for the study of the diverse roles of SETD7 in cells and further validates protein methyltransferases as a druggable target class. SET domain containing (lysine methyltransferase) 7 (SETD7) is implicated in multiple signaling and disease related pathways with a broad diversity of reported substrates. Here, we report the discovery of (R)-PFI-2—a first-in-class, potent (Kiapp = 0.33 nM), selective, and cell-active inhibitor of the methyltransferase activity of human SETD7—and its 500-fold less active enantiomer, (S)-PFI-2. (R)-PFI-2 exhibits an unusual cofactor-dependent and substrate-competitive inhibitory mechanism by occupying the substrate peptide binding groove of SETD7, including the catalytic lysine-binding channel, and by making direct contact with the donor methyl group of the cofactor, S-adenosylmethionine. Chemoproteomics experiments using a biotinylated derivative of (R)-PFI-2 demonstrated dose-dependent competition for binding to endogenous SETD7 in MCF7 cells pretreated with (R)-PFI-2. In murine embryonic fibroblasts, (R)-PFI-2 treatment phenocopied the effects of Setd7 deficiency on Hippo pathway signaling, via modulation of the transcriptional coactivator Yes-associated protein (YAP) and regulation of YAP target genes. In confluent MCF7 cells, (R)-PFI-2 rapidly altered YAP localization, suggesting continuous and dynamic regulation of YAP by the methyltransferase activity of SETD7. These data establish (R)-PFI-2 and related compounds as a valuable tool-kit for the study of the diverse roles of SETD7 in cells and further validate protein methyltransferases as a druggable target class.
Cancer Research | 2015
Bhavatarini Vangamudi; Thomas A. Paul; Parantu K. Shah; Maria Kost-Alimova; Lisa Nottebaum; Xi Shi; Yanai Zhan; Elisabetta Leo; Harshad S. Mahadeshwar; Alexei Protopopov; Andrew Futreal; Trang Tieu; Mike Peoples; Timothy P. Heffernan; Joseph R. Marszalek; Carlo Toniatti; Alessia Petrocchi; Dominique Verhelle; Dafydd R. Owen; Giulio Draetta; Philip Jones; Wylie Solang Palmer; Shikhar Sharma; Jannik N. Andersen
The SWI/SNF multisubunit complex modulates chromatin structure through the activity of two mutually exclusive catalytic subunits, SMARCA2 and SMARCA4, which both contain a bromodomain and an ATPase domain. Using RNAi, cancer-specific vulnerabilities have been identified in SWI/SNF-mutant tumors, including SMARCA4-deficient lung cancer; however, the contribution of conserved, druggable protein domains to this anticancer phenotype is unknown. Here, we functionally deconstruct the SMARCA2/4 paralog dependence of cancer cells using bioinformatics, genetic, and pharmacologic tools. We evaluate a selective SMARCA2/4 bromodomain inhibitor (PFI-3) and characterize its activity in chromatin-binding and cell-functional assays focusing on cells with altered SWI/SNF complex (e.g., lung, synovial sarcoma, leukemia, and rhabdoid tumors). We demonstrate that PFI-3 is a potent, cell-permeable probe capable of displacing ectopically expressed, GFP-tagged SMARCA2-bromodomain from chromatin, yet contrary to target knockdown, the inhibitor fails to display an antiproliferative phenotype. Mechanistically, the lack of pharmacologic efficacy is reconciled by the failure of bromodomain inhibition to displace endogenous, full-length SMARCA2 from chromatin as determined by in situ cell extraction, chromatin immunoprecipitation, and target gene expression studies. Furthermore, using inducible RNAi and cDNA complementation (bromodomain- and ATPase-dead constructs), we unequivocally identify the ATPase domain, and not the bromodomain of SMARCA2, as the relevant therapeutic target with the catalytic activity suppressing defined transcriptional programs. Taken together, our complementary genetic and pharmacologic studies exemplify a general strategy for multidomain protein drug-target validation and in case of SMARCA2/4 highlight the potential for drugging the more challenging helicase/ATPase domain to deliver on the promise of synthetic-lethality therapy.
Science Advances | 2015
Oleg Fedorov; Josefina Castex; Cynthia Tallant; Dafydd R. Owen; Sarah Martin; Matteo Aldeghi; Octovia P. Monteiro; Panagis Filippakopoulos; Sarah Picaud; John David Trzupek; Brian S. Gerstenberger; C. Bountra; Dominica Willmann; Christopher Wells; Martin Philpott; Catherine Rogers; Philip C. Biggin; Paul E. Brennan; Mark Edward Bunnage; Roland Schüle; Thomas Günther; Stefan Knapp; Susanne Müller
PFI-3, a novel inhibitor targeting the bromodomains of essential components of the BAF/PBAF complex, affects the differentiation of ESC and TSC. Mammalian SWI/SNF [also called Brg/Brahma-associated factors (BAFs)] are evolutionarily conserved chromatin-remodeling complexes regulating gene transcription programs during development and stem cell differentiation. BAF complexes contain an ATP (adenosine 5′-triphosphate)–driven remodeling enzyme (either BRG1 or BRM) and multiple protein interaction domains including bromodomains, an evolutionary conserved acetyl lysine–dependent protein interaction motif that recruits transcriptional regulators to acetylated chromatin. We report a potent and cell active protein interaction inhibitor, PFI-3, that selectively binds to essential BAF bromodomains. The high specificity of PFI-3 was achieved on the basis of a novel binding mode of a salicylic acid head group that led to the replacement of water molecules typically maintained in other bromodomain inhibitor complexes. We show that exposure of embryonic stem cells to PFI-3 led to deprivation of stemness and deregulated lineage specification. Furthermore, differentiation of trophoblast stem cells in the presence of PFI-3 was markedly enhanced. The data present a key function of BAF bromodomains in stem cell maintenance and differentiation, introducing a novel versatile chemical probe for studies on acetylation-dependent cellular processes controlled by BAF remodeling complexes.
Developmental Cell | 2016
Menno J. Oudhoff; Mitchell J.S. Braam; Spencer A. Freeman; Denise Wong; David Rattray; Jia Wang; Frann Antignano; Kimberly Snyder; Ido Refaeli; Michael R. Hughes; Kelly M. McNagny; Michael R. Gold; C.H. Arrowsmith; Toshiro Sato; Fabio Rossi; John Howard Tatlock; Dafydd R. Owen; Peter J. Brown; Colby Zaph
Intestinal tumorigenesis is a result of mutations in signaling pathways that control cellular proliferation, differentiation, and survival. Mutations in the Wnt/β-catenin pathway are associated with the majority of intestinal cancers, while dysregulation of the Hippo/Yes-Associated Protein (YAP) pathway is an emerging regulator of intestinal tumorigenesis. In addition, these closely related pathways play a central role during intestinal regeneration. We have previously shown that methylation of the Hippo transducer YAP by the lysine methyltransferase SETD7 controls its subcellular localization and function. We now show that SETD7 is required for Wnt-driven intestinal tumorigenesis and regeneration. Mechanistically, SETD7 is part of a complex containing YAP, AXIN1, and β-catenin, and SETD7-dependent methylation of YAP facilitates Wnt-induced nuclear accumulation of β-catenin. Collectively, these results define a methyltransferase-dependent regulatory mechanism that links the Wnt/β-catenin and Hippo/YAP pathways during intestinal regeneration and tumorigenesis.
Journal of Medicinal Chemistry | 2016
Brian S. Gerstenberger; John David Trzupek; Cynthia Tallant; Oleg Fedorov; Panagis Filippakopoulos; Paul E. Brennan; Vita Fedele; Sarah Martin; Sarah Picaud; Catherine Rogers; Mihir D. Parikh; Alexandria P. Taylor; Brian Samas; Alison O’Mahony; Ellen Berg; Gabriel Pallares; Adam Torrey; Daniel Kelly Treiber; Ivan Samardjiev; Brian T. Nasipak; Teresita Padilla-Benavides; Qiong Wu; Anthony N. Imbalzano; Jeffrey A. Nickerson; Mark Edward Bunnage; Susanne Müller; Stefan Knapp; Dafydd R. Owen
The acetyl post-translational modification of chromatin at selected histone lysine residues is interpreted by an acetyl-lysine specific interaction with bromodomain reader modules. Here we report the discovery of the potent, acetyl-lysine-competitive, and cell active inhibitor PFI-3 that binds to certain family VIII bromodomains while displaying significant, broader bromodomain family selectivity. The high specificity of PFI-3 for family VIII was achieved through a novel bromodomain binding mode of a phenolic headgroup that led to the unusual displacement of water molecules that are generally retained by most other bromodomain inhibitors reported to date. The medicinal chemistry program that led to PFI-3 from an initial fragment screening hit is described in detail, and additional analogues with differing family VIII bromodomain selectivity profiles are also reported. We also describe the full pharmacological characterization of PFI-3 as a chemical probe, along with phenotypic data on adipocyte and myoblast cell differentiation assays.
Bioorganic & Medicinal Chemistry Letters | 2009
Dafydd R. Owen; John K. Walker; E. Jon Jacobsen; John N. Freskos; Robert O. Hughes; David L. Brown; Andrew Simon Bell; David Brown; Christopher Phillips; Brent V. Mischke; John M. Molyneaux; Yvette M. Fobian; Steve E. Heasley; Joseph B. Moon; William C. Stallings; D. Joseph Rogier; David Nathan Abraham Fox; Michael John Palmer; Tracy J. Ringer; Margarita Rodriquez-Lens; Jerry W. Cubbage; Radhika M Blevis-Bal; Alan G. Benson; Brad A. Acker; Todd Michael Maddux; Michael B. Tollefson; Brian R. Bond; Alan MacInnes; Yung Yu
A new class of potent and selective PDE5 inhibitors is disclosed. Guided by X-ray crystallographic data, optimization of an HTS lead led to the discovery of a series of 2-aryl, (N8)-alkyl substituted-6-aminosubstituted pyrido[3,2b]pyrazinones which show potent inhibition of the PDE5 enzyme. Synthetic details and some structure-activity relationships are also presented.