Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dag Nummedal is active.

Publication


Featured researches published by Dag Nummedal.


Marine Geology | 1984

Control of barrier island shape by inlet sediment bypassing: East Frisian Islands, West Germany

Duncan M. FitzGerald; Shea Penland; Dag Nummedal

Abstract A study of the East Frisian Islands has shown that the plan form of these islands can be explained by processes of inlet sediment bypassing. This island chain is located on a high wave energy, high tide range shoreline where the average deep-water significant wave height exceeds 1.0 m and the spring tidal range varies from 2.7 m at Juist to 2.9 m at Wangerooge. An abundant sediment supply and a strong eastward component of wave power (4.4 × 103 W m−1) have caused a persistent eastward growth of the barrier islands. The eastward extension of the barriers has been accommodated more by inlet narrowing, than by inlet migration. It is estimated from morphological evidence that a minimum of 2.7 × 105 m3 of sand is delivered to the inlets each year via the easterly longshore transport system. Much of this sand ultimately bypasses the inlets in the form of large, migrating swash bars. The location where the swash bars attach to the beach is controlled by the amount of overlap of the ebb-tidal delta along the downdrift inlet shoreline. The configuration of the ebbtidal delta, in turn, is a function of inlet size and position of the main ebb channel. The swash bar welding process has caused preferential beach nourishment and historical shoreline progradation. Along the East Frisian Islands this process has produced barrier islands with humpbacked, bulbous updrift and bulbous downdrift shapes. The model of barrier island development presented in this paper not only explains well the configuration of the German barriers but also the morphology of barriers along many other mixed energy coasts.


Geology | 1995

Flexural subsidence and basement tectonics of the Cretaceous Western Interior basin, United States

Ming Pang; Dag Nummedal

The flexural subsidence history recorded in Cenomanian to early Campanian (97 to 80 Ma) strata in the Cretaceous U.S. Western Interior basin was studied with two-dimensional flexural backstripping techniques. Results indicate that the flexural subsidence resulting from thrust loading was superimposed on epeirogenic subsidence in the foreland basin. The flexural component exhibits significant spatial and temporal variations along both the strike and dip relative to the Sevier thrust belt. The greatest cumulative subsidence occurred in southwestern Wyoming and northern Utah. Concurrent subsidence in northwestern Montana and southern Utah was insignificant. Temporal trends in subsidence also show a distinct regional pattern. From the Cenomanian to late Turonian (97 to 90 Ma), subsidence rates were high in Utah and much lower in Wyoming and Montana. In contrast, during the Coniacian and Santonian (90 to 85 Ma) subsidence accelerated rapidly in Wyoming, increased slightly in Montana, and decreased in Utah. We suggest that these spatially and temporally varying subsidence patterns reflect the interplay of several geodynamic factors, including: (1) temporal and spatial variation in emplacement of the thrust loads, (2) segmentation of the basement into adjacent blocks with different rheological properties, (3) reactivation of basement fault trends, and (4) regional dynamic topographic effects.


16th International Conference on Coastal Engineering | 1978

PROCESS-RESPONSE MODELS FOR DEPOSITIONAL SHORELINES: THE GERMAN AND THE GEORGIA BIGHTS

Dag Nummedal; Ian A. Fischer

The equations describing conservation of mass, momentum and energy in a turbulent free surface flow are derived for a controle volume extending over the whole depth. The effect of the turbulent surface oscillations are discussed but neglected in the following analysis, where the equations are applied to the energy balance in a surf zone wave motion. This leads to results for the wave height variation and the velocity of propagation. The results cannot be reconciled completely with measurements and the concluding discussion is aimed at revealing how the model can be improved.A three-dimensional morphodynamic model of sequential beach changes Is presented. The model Is based on variations in breaker wave power generating a predictable sequence of beach conditions. The spectrum of beach conditions from fully eroded-dissipatlve to fully accreted reflective is characterised by ten beach-stages. Using the breaker wave power to beach-stage relationship the model Is applied to explain temporal, spatial and global variations In beach morphodynamlcs.The agents of initial damage to the dunes are water, which undermines them, and animals (including man) which damage the protective vegetation by grazing or trampling. Of these, man has recently assumed predominant local importance because of the popularity of sea-side holidays and of the land-falls of certain marine engineering works such as oil and gas pipelines and sewage outfalls. The need is therefore increasing for active dune management programmes to ensure that under these accentuated pressures, the coast retain an equilibrium comparable with that delicately balanced equilibrium which obtains naturally at a particular location.


Geological Society of America Bulletin | 1983

Sources of shape variation in lunar impact craters: Fourier shape analysis

Duane T. Eppler; Robert Ehrlich; Dag Nummedal; Peter H. Schultz

R-mode factor analysis of Fourier harmonics that describe the shape-in-plan-view of 716 large (diameter > 15 km) nearside lunar craters shows that two factors explain 84.3% of shape variance observed in the sample. Factor I accounts for 68.2% of the sample variance and describes moderate-scale roughness defined by harmonics 7 through 10. Shape variation described by these harmonics is related to surficial lunar processes of degradation that modify crater shape-in-plan. Dominant among these processes are ejecta scour from large impact events and ongoing aging. Factor II accounts for 16.1% of the observed shape variance and describes polygonal shape elements related to harmonics 2, 3, 4, and 6. Variation in these harmonics is tied to variables that distort the spherical symmetry of crater-forming processes. The dominant contributor among these variables is the nature of geologic structural patterns in impacted material. Unlike transient features described by factor I, polygonal shape elements described by factor II do not change appreciably with time. The permanence of these features and their relation to lunar geologic structure suggest that the shape of old craters carries the imprint of geologic structural relationships present in early lunar crust.


Marine Geology | 1984

Sediment Transport and Morphology at the Surf Zone of Presque Isle, Lake Erie, Pennsylvania

Dag Nummedal; David L. Sonnenfeld; Kent Taylor

Abstract A four-year investigation of surf zone sedimentation at Presque Isle, Pennsylvania, was undertaken in preparation for the design of a segmented breakwater system. Sediment transport calculations were based on hind-cast annual wave power statistics and “calibrated” by known accretion rates at the downdrift spit terminus. 30,000 m 3 of sediment reaches the peninsula annually from updrift beaches. The transport volume increases downdrift due to shoreface erosion and retreat of the peninsular neck. At the most exposed point on Presque Isle (the lighthouse) the annual transport is 209,000 m 3 . East of the lighthouse is a zone of net shoreface accretion as the longshore transport rate progressively decreases. The downdrift variation in sediment supply, combined with increasing refraction and attenuation of the dominant westerly storm waves produce a systematic change in prevailing surf zone morphology. Storms produce a major longshore bar and trough along the exposed peninsular neck. The wave energy during non-storm periods is too low to significantly alter the bar which consequently becomes a permanent feature. The broad shoreface and reduced wave energy level east of the lighthouse produce a morphology characterized by large crescentic outer bars, transverse bars, and megacusps along the beach. At the sheltered and rapidly prograding eastern spit terminus the prevalent beach morphology is that of a ridge and runnel system in front of a megacuspate shore. The morphodynamic surf zone model developed for oceanic beaches in Australia is used as a basis for interpretation of shoreface morphologic variability at Presque Isle. In spite of interference by major shoreline stabilization structures, and differences between oceanic and lake wave spectra, the nearshore bar field at Presque Isle does closely correspond to the Australian model.


Sedimentary Geology | 1990

Coherence of surf zone and shelf current flow on the Texas (U.S.A.) coastal margin: implications for interpretation of paleo-current measurements in ancient coastal sequences

John W. Snedden; Dag Nummedal

Abstract Measurements from the Texas coastal margin, a microtidal, fetch-limited, wind-dominated shallow sea, reveal a strong correlation in timing and direction of surf zone and shelf flow during both fairweather and storm events. Coherence of current motion is statistically significant at many frequencies (cycle lengths) and is highest during storm events. The lack of a significant lag between surf zone and shelf flow indicates that both respond rapidly to changes in the magnitude and direction of the wind field. The alongshelf component of the wind stress is a major force in generating currents both on the shelf and in the surf zone, as exhibited by comparison of numerical predictions and observed velocities. During the 140-day study period, current flow was mainly directed alongshelf to the northeast and southwest, driven by southerly “fairweather” and northerly “storm” winds, respectively. However, the threshold for generation and migration of megaripple bedforms in upper shoreface bar-troughs was exceeded only during storm events when surf zone flow was oriented to the southwest, along the coast. This observation, coupled with the knowledge that storm-generated bedforms have the highest preservation potential, imply that multi-event traction bedding in upper shoreface bar-troughs of analogous ancient environments will be dominated by unimodal alongshore current orientations. Large-scale bedforms which respond to this time-averaged flow on the shelf are expected to display a similar unimodal alongshelf orientation with a low-angle deviation toward the offshore direction. Careful study of paleo-current measurements in a well-documented ancient shelf to shoreline sequence in the Cretaceous of New Mexico reflects this similarity in transport kinematics.


18th International Conference on Coastal Engineering | 1982

A PROCESS-RESPONSE MODEL FOR HURRICANE WASHOVERS

John R. Suter; Dag Nummedal; Amy K. Maynard; Paul Kemp

The cost of many coastal projects is often increased by the expensive beach repair and maintenance required to remedy the destabilising effects of structures on the adjoining coastline. Physical and/or mathematical models have been developed for use in planning these projects in order to predict and quantify the effects of marine sediment transport on the coastal topography. Such models need to be calibrated against prototype data and one method of gauging volumetric sediment movement is by successive bathymetric/ topographic profiting surveys which are performed seasonally and annually. Since large quantities of sediment are related to small changes in bed elevation it is clear that this profiling needs to be done with the utmost precision* The areas most affected extend from the beach through the surf zone to water depths of about 25 metres. The surf zone in particular is a dynamic and hostile area which falls outside the traditional activities of both the hydrographic and land surveyors. Consequently innovative methods, deficient in sound survey principle and practice, have often been pursued in this area without any attempt being made to assess the tolerance on the data. This paper attempts to show that it is possible to produce reliable and verifiable results to the required accuracy by using conventional survey equipment and techniques, also by taking the necessary precautions against the many possible sources of survey error. The procedures and techniques described have evolved from NRIOs involvement over the past decade in major projects at Richards Bay, Durban, Koeberg and in False Bay. The results of a recent verification investigation are fully reported in this paper.Besides wave impact forces, erosion of the inner side of a sea dike is a serious cause of destruction. Therefore, wave run-up and overtopping effects have to be considered with respect to the safety of a dike. Strong relations were found between both these influences (TAUTENHAIN et.al., 1980, 1981, 1982), based on experiments in a wave flume and using an energy conservation concept. However, under natural conditions, an oblique wave approach has to be considered. This paper deals with the influence of wave direction on wave runup on a smooth dike slope in order to provide a basis for calculating the overtopping rates for both regular and irregular waves.This paper describes a study carried out at Port Taranaki, New Plymouth, New Zealand to determine ships track and motions at the port entrance. The results of the study being used to establish the extent (plan area) and optimum depth of proposed capital dredging works. The time lapse photographic technique, incorporating reference levels and bearings in each frame, used to record vessels entering and leaving the port is described, Maximum increases in ships draft due to sea conditions are given.N.S.L. program is a finite-difference code for two dimensionnal flows with a free surface in a vertical plane. Basic equations are Navier-Stokes Equations with a simple simulation of turbulent effects by an eddy viscosity coefficient related to the mixing length and the mean velocity gradient. Theses equations are solved in a variable domain in time. The main features of the numerical method are presented. Some comparisons with theoretical solutions give a good validation of the code both in linear and non linear cases. Other examples of application are given.The design of the coal unloading terminal in an unprotected environment created the need to develop design criteria as well as operational and structural systems that will respond toproblems arising from unloading bulk in the open sea. As there was no known precedent of an unprotected unloading terminal, the criteria was based on experience in existing offshore loadina terminals, laboratory tests and engineering judgement.A large number of man-made tidal swimming pools (two examples are shown in Figure 1) exist along the South African coast. They are usually situated on rocky outcrops in the close vicinity of popular sandy bathing beaches to provide protected bathing conditions in these areas mainly for children and elderly people. Some tidal pools, especially along rocky coast, provide the only safe bathing facilities. Besides affording protection against waves and surfzone currents the pools provide protection from sharks. A large number of tidal pools were built during the early 1950s along the Natal South Coast after the occurrence of a relatively large number of shark attacks on bathers on that coast. The semi-diurnal tide with a range of about 1,5 m along the South African coast makes it possible for pools to be built such that water replenishment can occur during every high-water (approximately every 12 hours) during both neap and spring tide periods. Presently, there exists a great need for more tidal pools as part of the demand for more recreational facilities along the South African coast. However, no information on design criteria could be found in the literature.The objective of this research is to study the prediction method of hurricane waves around this island, especially in the Taiwan Strait. The paper describes the prediction of hurricane waves used by Bretchneiders (1976) Method and finds out the predicted waves are different from measured waves, therefore the Bretchneider predicted model is modified by the authors and then the modified model is applied to predict waves again. It is found out that predicted waves match well with the measured waves. The results of the modified Bretchneider model are compared with those of the Ijima tracing method and find out the former is better than the latter. The second part is to apply the modified model to predict the extreme value of wave heights and compute the worse hurricane wave condition of the surrounding sea area around island, within recent score year (1959-1978). The calculated sites are Chu-Wei, Nan-Liaw, Ta-Shih, Cheng-Kung, Pu-Tai, Tung-Kang, Nan-Wan as shown in Fig.1 and Shiau Liu- Chieu totally 8 stations. Then use the Gumbel Distribution TYPE 1 to predict the extreme wave height of each returned period.In the design and construction of waterfront bulkhead systems, it is essential to consider the coastal effects of tides, waves, boat wakes, currents, bottom sediment movement and bottom scour. Many improperly designed bulkhead systems experience severe loss of backfill and toe materials with the bulkhead eventually failing if it is not corrected in time. Inadequate drainage, joint connections, and/or inadequate toe protection are typically the causes of failure. This paper describes an investigation of a bulkhead system supporting a large waterfront development in southern California which was experiencing widespread sinkhole development in the bulkheads backfill and was on the verge of losing toe material. The objective of this investigation was to determine the extent and cause of ongoing subsurface erosion, to evaluate its effect on the bulkhead stability, and to recommend and design mitigative measures. The cause of the erosion was determined to be piping of fine grained soils due to inadequate backfill drainage. A remedial drainage scheme was designed and field-tested, and several structural repair schemes were suggested for portions of the bulkhead where accumulated damage affected the integrity of the structure.


16th International Conference on Coastal Engineering | 1978

WIND-GENERATED LONGSHORE CURRENTS

Dag Nummedal; Robert J. Finley

The equations describing conservation of mass, momentum and energy in a turbulent free surface flow are derived for a controle volume extending over the whole depth. The effect of the turbulent surface oscillations are discussed but neglected in the following analysis, where the equations are applied to the energy balance in a surf zone wave motion. This leads to results for the wave height variation and the velocity of propagation. The results cannot be reconciled completely with measurements and the concluding discussion is aimed at revealing how the model can be improved.A three-dimensional morphodynamic model of sequential beach changes Is presented. The model Is based on variations in breaker wave power generating a predictable sequence of beach conditions. The spectrum of beach conditions from fully eroded-dissipatlve to fully accreted reflective is characterised by ten beach-stages. Using the breaker wave power to beach-stage relationship the model Is applied to explain temporal, spatial and global variations In beach morphodynamlcs.The agents of initial damage to the dunes are water, which undermines them, and animals (including man) which damage the protective vegetation by grazing or trampling. Of these, man has recently assumed predominant local importance because of the popularity of sea-side holidays and of the land-falls of certain marine engineering works such as oil and gas pipelines and sewage outfalls. The need is therefore increasing for active dune management programmes to ensure that under these accentuated pressures, the coast retain an equilibrium comparable with that delicately balanced equilibrium which obtains naturally at a particular location.


19th International Conference on Coastal Engineering | 1985

SEDIMENTATION PROCESSES ALONG THE EAST FRIESIAN ISLANDS, WEST GERMANY

Duncan M. FitzGerald; Shea Penland; Dag Nummedal

This report will update the coastal zone practitioner on the National Flood Insurance Program (NFIP) as it affects the implementation of manmade changes along the coastline. It is our intent to place in proper perspective this fast-changing and often difficult to interpret national program. Readers will achieve an overall understanding of the NFIP on the coast, and will be in a position to apply the programs requirements in their efforts. We will begin with a history of the application of the NFIP to the coastal zone. The history of the problems encountered will lead into current regulations, methodologies, and the changes the Federal Emergency Management Agency plans for the future.The spatial variability of the nearshore wave field is examined in terms of the coherence functions found between five closely spaced wave gages moored off the North Carolina coast in 17 meters depth. Coherence was found to rapidly decrease as the separation distance increased, particularly in the along-crest direction. This effect is expressed as nondimensional coherence contours which can be used to provide an estimate of the wave coherence expected between two spatial positions.Prediction of depositional patterns in estuaries is one of the primary concerns to coastal engineers planning major hydraulic works. For a well-mixed estuary where suspended load is the dominant transport mode, we propose to use the divergence of the distribution of the net suspended load to predict the depositional patterns. The method is applied to Hangzhou Bay, and the results agree well qualitatively with measured results while quantitatively they are also of the right order of magnitude.


16th International Conference on Coastal Engineering | 1978

VELOCITY AND STRESS MEASUREMENTS IN A TIDAL INLET

David A. Huntley; Dag Nummedal

The equations describing conservation of mass, momentum and energy in a turbulent free surface flow are derived for a controle volume extending over the whole depth. The effect of the turbulent surface oscillations are discussed but neglected in the following analysis, where the equations are applied to the energy balance in a surf zone wave motion. This leads to results for the wave height variation and the velocity of propagation. The results cannot be reconciled completely with measurements and the concluding discussion is aimed at revealing how the model can be improved.A three-dimensional morphodynamic model of sequential beach changes Is presented. The model Is based on variations in breaker wave power generating a predictable sequence of beach conditions. The spectrum of beach conditions from fully eroded-dissipatlve to fully accreted reflective is characterised by ten beach-stages. Using the breaker wave power to beach-stage relationship the model Is applied to explain temporal, spatial and global variations In beach morphodynamlcs.The agents of initial damage to the dunes are water, which undermines them, and animals (including man) which damage the protective vegetation by grazing or trampling. Of these, man has recently assumed predominant local importance because of the popularity of sea-side holidays and of the land-falls of certain marine engineering works such as oil and gas pipelines and sewage outfalls. The need is therefore increasing for active dune management programmes to ensure that under these accentuated pressures, the coast retain an equilibrium comparable with that delicately balanced equilibrium which obtains naturally at a particular location.

Collaboration


Dive into the Dag Nummedal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John R. Suter

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Shea Penland

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Amy K. Maynard

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kent Taylor

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Ming Pang

Louisiana State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge