Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dag Sehlin is active.

Publication


Featured researches published by Dag Sehlin.


Journal of Neurochemistry | 2007

Sensitive ELISA detection of amyloid-β protofibrils in biological samples

Hillevi Englund; Dag Sehlin; Ann-Sofi Johansson; Lars Nilsson; Pär Gellerfors; Staffan Paulie; Lars Lannfelt; Frida Ekholm Pettersson

Amyloid‐β (Aβ) protofibrils are known intermediates of the in vitro Aβ aggregation process and the protofibrillogenic Arctic mutation (APPE693G) provides clinical support for a pathogenic role of Aβ protofibrils in Alzheimer’s disease (AD). To verify their in vivo relevance and to establish a quantitative Aβ protofibril immunoassay, Aβ conformation dependent monoclonal antibodies were generated. One of these antibodies, mAb158 (IgG2a), was used in a sandwich ELISA to specifically detect picomolar concentrations of Aβ protofibrils without interference from Aβ monomers or the amyloid precursor protein (APP). The specificity and biological significance of this ELISA was demonstrated using cell cultures and transgenic mouse models expressing human APP containing the Swedish mutation (APPKN670/671ML), or the Swedish and Arctic mutation in combination. The mAb158 sandwich ELISA analysis revealed presence of Aβ protofibrils in both cell and animal models, proving that Aβ protofibrils are formed not only in vitro, but also in vivo. Furthermore, elevated Aβ protofibril levels in the Arctic‐Swedish samples emphasize the usefulness of the Arctic mutation as a model of enhanced protofibril formation. This assay provides a novel tool for investigating the role of Aβ protofibrils in AD and has the potential of becoming an important diagnostic assay.


Alzheimer's Research & Therapy | 2014

Perspectives on future Alzheimer therapies: amyloid-β protofibrils - a new target for immunotherapy with BAN2401 in Alzheimer's disease

Lars Lannfelt; Christer Möller; Hans Basun; Gunilla Osswald; Dag Sehlin; Andrew Satlin; Veronika Logovinsky; Pär Gellerfors

The symptomatic drugs currently on the market for Alzheimer’s disease (AD) have no effect on disease progression, and this creates a large unmet medical need. The type of drug that has developed most rapidly in the last decade is immunotherapy: vaccines and, especially, passive vaccination with monoclonal antibodies. Antibodies are attractive drugs as they can be made highly specific for their target and often with few side effects. Data from recent clinical AD trials indicate that a treatment effect by immunotherapy is possible, providing hope for a new generation of drugs. The first anti-amyloid-beta (anti-Aβ) vaccine developed by Elan, AN1792, was halted in phase 2 because of aseptic meningoencephalitis. However, in a follow-up study, patients with antibody response to the vaccine demonstrated reduced cognitive decline, supporting the hypothesis that Aβ immunotherapy may have clinically relevant effects. Bapineuzumab (Elan/Pfizer Inc./Johnson & Johnson), a monoclonal antibody targeting fibrillar Aβ, was stopped because the desired clinical effect was not seen. Solanezumab (Eli Lilly and Company) was developed to target soluble, monomeric Aβ. In two phase 3 studies, Solanezumab did not meet primary endpoints. When data from the two studies were pooled, a positive pattern emerged, revealing a significant slowing of cognitive decline in the subgroup of mild AD. The Arctic mutation has been shown to specifically increase the formation of soluble Aβ protofibrils, an Aβ species shown to be toxic to neurons and likely to be present in all cases of AD. A monoclonal antibody, mAb158, was developed to target Aβ protofibrils with high selectivity. It has at least a 1,000-fold higher selectivity for protofibrils as compared with monomers of Aβ, thus targeting the toxic species of the peptide. A humanized version of mAb158, BAN2401, has now entered a clinical phase 2b trial in a collaboration between BioArctic Neuroscience and Eisai without the safety concerns seen in previous phase 1 and 2a trials. Experiences from the field indicate the importance of initiating treatment early in the course of the disease and of enriching the trial population by improving the diagnostic accuracy. BAN2401 is a promising candidate for Aβ immunotherapy in early AD. Other encouraging efforts in immunotherapy as well as in the small-molecule field offer hope for new innovative therapies for AD in the future.


Neurobiology of Disease | 2009

An amyloid-β protofibril-selective antibody prevents amyloid formation in a mouse model of Alzheimer's disease

Anna Lord; Astrid Gumucio; Hillevi Englund; Dag Sehlin; Valentina Screpanti Sundquist; Linda Söderberg; Christer Möller; Pär Gellerfors; Lars Lannfelt; Frida Ekholm Pettersson; Lars Nilsson

Human genetics link Alzheimers disease pathogenesis to excessive accumulation of amyloid-beta (Abeta) in brain, but the symptoms do not correlate with senile plaque burden. Since soluble Abeta aggregates can cause synaptic dysfunctions and memory deficits, these species could contribute to neuronal dysfunction and dementia. Here we explored selective targeting of large soluble aggregates, Abeta protofibrils, as a new immunotherapeutic strategy. The highly protofibril-selective monoclonal antibody mAb158 inhibited in vitro fibril formation and protected cells from Abeta protofibril-induced toxicity. When the mAb158 antibody was administered for 4 months to plaque-bearing transgenic mice with both the Arctic and Swedish mutations (tg-ArcSwe), Abeta protofibril levels were lowered while measures of insoluble Abeta were unaffected. In contrast, when treatment began before the appearance of senile plaques, amyloid deposition was prevented and Abeta protofibril levels diminished. Therapeutic intervention with mAb158 was however not proven functionally beneficial, since place learning depended neither on treatment nor transgenicity. Our findings suggest that Abeta protofibrils can be selectively cleared with immunotherapy in an animal model that display highly insoluble Abeta deposits, similar to those of Alzheimers disease brain.


Journal of Alzheimer's Disease | 2010

Interference from Heterophilic Antibodies in Amyloid-β Oligomer ELISAs

Dag Sehlin; Sofia Söllvander; Staffan Paulie; RoseMarie Brundin; Martin Ingelsson; Lars Lannfelt; Frida Ekholm Pettersson; Hillevi Englund

Amyloid-β (Aβ) oligomers of different sizes and forms have recently been the focus formany Alzheimers disease (AD) researchers. Various immunoassays have been used to detect low concentrations of these elusive Aβ species in different forms of human samples using little or no sample dilutions. However, the possibility that positive results may be caused by interference from heterophilic antibodies (HA) is often overlooked. HA, which recognize immunoglobulins from other species, are present in human plasma and cerebrospinal fluid (CSF) and may cause interference in sandwich immunoassays like enzyme-linked immunosorbent assays (ELISAs) by cross-binding the capture and detection antibodies of the assay. They thus may generate a false positive signal. Here we show that when assessing the Aβ oligomer content in plasma samples from 44 individuals with a sandwich ELISA, none of the 21 positive signals remained when the assay was repeated in the presence of factors blocking HA. Similarly, in CSF samples from 104 individuals, the signals from the 22 positive samples were strongly reduced when analyzed after anti-HA treatment. Taken together, HA interference is a problem that needs to be addressed when measuring low levels of an antigen in human plasma and CSF samples.


Nature Communications | 2016

Antibody-based PET imaging of amyloid beta in mouse models of Alzheimer's disease.

Dag Sehlin; Xiaotian T. Fang; Linda Cato; Gunnar Antoni; Lars Lannfelt; Stina Syvänen

Owing to their specificity and high-affinity binding, monoclonal antibodies have potential as positron emission tomography (PET) radioligands and are currently used to image various targets in peripheral organs. However, in the central nervous system, antibody uptake is limited by the blood–brain barrier (BBB). Here we present a PET ligand to be used for diagnosis and evaluation of treatment effects in Alzheimers disease. The amyloid β (Aβ) antibody mAb158 is radiolabelled and conjugated to a transferrin receptor antibody to enable receptor-mediated transcytosis across the BBB. PET imaging of two different mouse models with Aβ pathology clearly visualize Aβ in the brain. The PET signal increases with age and correlates closely with brain Aβ levels. Thus, we demonstrate that antibody-based PET ligands can be successfully used for brain imaging.


PLOS ONE | 2012

Large Aggregates Are the Major Soluble Aβ Species in AD Brain Fractionated with Density Gradient Ultracentrifugation

Dag Sehlin; Hillevi Englund; Barbro Simu; Mikael Karlsson; Martin Ingelsson; Fredrik Nikolajeff; Lars Lannfelt; Frida Ekholm Pettersson

Soluble amyloid-β (Aβ) aggregates of various sizes, ranging from dimers to large protofibrils, have been associated with neurotoxicity and synaptic dysfunction in Alzheimers Disease (AD). To investigate the properties of biologically relevant Aβ species, brain extracts from amyloid β protein precursor (AβPP) transgenic mice and AD patients as well as synthetic Aβ preparations were separated by size under native conditions with density gradient ultracentrifugation. The fractionated samples were then analyzed with atomic force microscopy (AFM), ELISA, and MTT cell viability assay. Based on AFM appearance and immunoreactivity to our protofibril selective antibody mAb158, synthetic Aβ42 was divided in four fractions, with large aggregates in fraction 1 and the smallest species in fraction 4. Synthetic Aβ aggregates from fractions 2 and 3 proved to be most toxic in an MTT assay. In AβPP transgenic mouse brain, the most abundant soluble Aβ species were found in fraction 2 and consisted mainly of Aβ40. Also in AD brains, Aβ was mainly found in fraction 2 but primarily as Aβ42. All biologically derived Aβ from fraction 2 was immunologically discriminated from smaller species with mAb158. Thus, the predominant species of biologically derived soluble Aβ, natively separated by density gradient ultracentrifugation, were found to match the size of the neurotoxic, 80–500 kDa synthetic Aβ protofibrils and were equally detected with mAb158.


Molecular Neurodegeneration | 2016

Accumulation of amyloid-β by astrocytes result in enlarged endosomes and microvesicle-induced apoptosis of neurons

Sofia Söllvander; Elisabeth Nikitidou; Robin Brolin; Linda Söderberg; Dag Sehlin; Lars Lannfelt; Anna Erlandsson

BackgroundDespite the clear physical association between activated astrocytes and amyloid-β (Aβ) plaques, the importance of astrocytes and their therapeutic potential in Alzheimer’s disease remain elusive. Soluble Aβ aggregates, such as protofibrils, have been suggested to be responsible for the widespread neuronal cell death in Alzheimer’s disease, but the mechanisms behind this remain unclear. Moreover, ineffective degradation is of great interest when it comes to the development and progression of neurodegeneration. Based on our previous results that astrocytes are extremely slow in degrading phagocytosed material, we hypothesized that astrocytes may be an important player in these processes. Hence, the aim of this study was to clarify the role of astrocytes in clearance, spreading and neuronal toxicity of Aβ.ResultsTo examine the role of astrocytes in Aβ pathology, we added Aβ protofibrils to a co-culture system of primary neurons and glia. Our data demonstrates that astrocytes rapidly engulf large amounts of Aβ protofibrils, but then store, rather than degrade the ingested material. The incomplete digestion results in a high intracellular load of toxic, partly N-terminally truncated Aβ and severe lysosomal dysfunction. Moreover, secretion of microvesicles containing N-terminally truncated Aβ, induce apoptosis of cortical neurons.ConclusionsTaken together, our results suggest that astrocytes play a central role in the progression of Alzheimer’s disease, by accumulating and spreading toxic Aβ species.


BMC Neuroscience | 2010

Sensitive detection of Aβ protofibrils by proximity ligation - relevance for Alzheimer's disease

Masood Kamali-Moghaddam; Frida Ekholm Pettersson; Di Wu; Hillevi Englund; Spyros Darmanis; Anna Lord; Gholamreza Tavoosidana; Dag Sehlin; Sigrun M. Gustafsdottir; Lars Nilsson; Lars Lannfelt; Ulf Landegren

BackgroundProtein aggregation plays important roles in several neurodegenerative disorders. For instance, insoluble aggregates of phosphorylated tau and of Aβ peptides are cornerstones in the pathology of Alzheimers disease. Soluble protein aggregates are therefore potential diagnostic and prognostic biomarkers for their cognate disorders. Detection of the aggregated species requires sensitive tools that efficiently discriminate them from monomers of the same proteins. Here we have established a proximity ligation assay (PLA) for specific and sensitive detection of Aβ protofibrils via simultaneous recognition of three identical determinants present in the aggregates. PLA is a versatile technology in which the requirement for multiple target recognitions is combined with the ability to translate signals from detected target molecules to amplifiable DNA strands, providing very high specificity and sensitivity.ResultsFor specific detection of Aβ protofibrils we have used a monoclonal antibody, mAb158, selective for Aβ protofibrils in a modified PLA, where the same monoclonal antibody was used for the three classes of affinity reagents required in the assay. These reagents were used for detection of soluble Aβ aggregates in solid-phase reactions, allowing detection of just 0.1 pg/ml Aβ protofibrils, and with a dynamic range greater than six orders of magnitude. Compared to a sandwich ELISA setup of the same antibody the PLA increases the sensitivity of the Aβ protofibril detection by up to 25-fold. The assay was used to measure soluble Aβ aggregates in brain homogenates from mice transgenic for a human allele predisposing to Aβ aggregation.ConclusionsThe proximity ligation assay is a versatile analytical technology for proteins, which can provide highly sensitive and specific detection of Aβ aggregates - and by implication other protein aggregates of relevance in Alzheimers disease and other neurodegenerative disorders.


Theranostics | 2017

Bivalent Brain Shuttle Increases Antibody Uptake by Monovalent Binding to the Transferrin Receptor.

Greta Hultqvist; Stina Syvänen; Xiaotian T. Fang; Lars Lannfelt; Dag Sehlin

The blood-brain barrier (BBB) is an obstacle for antibody passage into the brain, impeding the development of immunotherapy and antibody-based diagnostics for brain disorders. In the present study, we have developed a brain shuttle for active transport of antibodies across the BBB by receptor-mediated transcytosis. We have thus recombinantly fused two single-chain variable fragments (scFv) of the transferrin receptor (TfR) antibody 8D3 to the light chains of mAb158, an antibody selectively binding to Aβ protofibrils, which are involved in the pathogenesis of Alzheimers disease (AD). Despite the two TfR binders, a monovalent interaction with TfR was achieved due to the short linkers that sterically hinder bivalent binding to the TfR dimer. The design enabled efficient receptor-mediated brain uptake of the fusion protein. Two hours after administration, brain concentrations were 2-3% of the injected dose per gram brain, comparable to small molecular drugs and 80-fold higher than unmodified mAb158. After three days, fusion protein concentrations in AD transgenic mouse brains were 9-fold higher than in wild type mice, demonstrating high in vivo specificity. Thus, our innovative recombinant design markedly increases mAb158 brain uptake, which makes it a strong candidate for improved Aβ immunotherapy and as a PET radioligand for early diagnosis and evaluation of treatment effect in AD. Moreover, this approach could be applied to any target within the brain.


PLOS ONE | 2014

Increased Inflammatory Response in Cytomegalovirus Seropositive Patients with Alzheimer’s Disease

Gabriel Westman; David Berglund; Johan Widén; Martin Ingelsson; Olle Korsgren; Lars Lannfelt; Dag Sehlin; Anna-Karin Lidehall; Britt-Marie Eriksson

Alzheimer’s disease (AD) has been associated with increased local inflammation in the affected brain regions, and in some studies also with elevated levels of proinflammatory cytokines in peripheral blood. Cytomegalovirus (CMV) is known to promote a more effector-oriented phenotype in the T-cell compartment, increasing with age. The aim of this study was to investigate the inflammatory response of peripheral blood mononuclear cells (PBMCs) from AD patients and non-demented (ND) controls. Using a multiplex Luminex xMAP assay targeting GM-CSF, IFN-γ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IP-10 and TNF-α, cytokine profiles from PBMCs were analysed after stimulation with anti-CD3/CD28 beads, CMV pp65 peptide mix or amyloid β (Aβ) protofibrils, respectively. CMV seropositive AD subjects presented with higher IFN-γ levels after anti-CD3/CD28 and CMV pp65 but not after Aβ stimulation, compared to CMV seropositive ND controls. When analysing IFN-γ response to anti-CD3/CD28 stimulation on a subgroup level, CMV seropositive AD subjects presented with higher levels compared to both CMV seronegative AD and CMV seropositive ND subjects. Taken together, our data from patients with clinically manifest AD suggest a possible role of CMV as an inflammatory promoter in AD immunology. Further studies of AD patients at earlier stages of disease, could provide better insight into the pathophysiology.

Collaboration


Dive into the Dag Sehlin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars Nilsson

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge