Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dagmar Barz is active.

Publication


Featured researches published by Dagmar Barz.


Critical Care | 2010

Anemia and blood transfusion in a surgical intensive care unit

Yasser Sakr; Suzana Lobo; Stefanie Knuepfer; Elizabeth Esser; Michael Bauer; Utz Settmacher; Dagmar Barz; Konrad Reinhart

IntroductionStudies in intensive care unit (ICU) patients have suggested that anemia and blood transfusions can influence outcomes, but these effects have not been widely investigated specifically in surgical ICU patients.MethodsWe retrospectively analyzed the prospectively collected data from all adult patients (>18 years old) admitted to a 50-bed surgical ICU between 1st March 2004 and 30th July 2006.ResultsOf the 5925 patients admitted during the study period, 1833 (30.9%) received a blood transfusion in the ICU. Hemoglobin concentrations were < 9 g/dl on at least one occasion in 57.6% of patients. Lower hemoglobin concentrations were associated with a higher Simplified Acute Physiology Score II and Sequential Organ Failure Assessment score, greater mortality rates, and longer ICU and hospital lengths of stay. Transfused patients had higher ICU (12.5 vs. 3.2%) and hospital (18.3 vs. 6.5%) mortality rates (both p < 0.001) than non-transfused patients. However, ICU and in-hospital mortality rates were similar among transfused and non-transfused matched pairs according to a propensity score (n = 1184 pairs), and after adjustment for possible confounders in a multivariable analysis, higher hemoglobin concentrations (RR 0.97[0.95-0.98], per 1 g/dl, p < 0.001) and blood transfusions (RR 0.96[0.92-0.99], p = 0.031) were independently associated with a lower risk of in-hospital death, especially in patients aged from 66 to 80 years, in patients admitted to the ICU after non-cardiovascular surgery, in patients with higher severity scores, and in patients with severe sepsis.ConclusionsIn this group of surgical ICU patients, anemia was common and was associated with higher morbidity and mortality. Higher hemoglobin concentrations and receipt of a blood transfusion were independently associated with a lower risk of in-hospital death. Randomized control studies are warranted to confirm the potential benefit of blood transfusions in these subpopulations.


Biochemical Pharmacology | 2013

Potent inhibition of human 5-lipoxygenase and microsomal prostaglandin E2 synthase-1 by the anti-carcinogenic and anti-inflammatory agent embelin

Anja M. Schaible; Heidi Traber; Veronika Temml; Stefan M. Noha; Rosanna Filosa; Antonella Peduto; Christina Weinigel; Dagmar Barz; Daniela Schuster; Oliver Werz

Embelin (2,5-dihydroxy-3-undecyl-1,4-benzoquinone) possesses anti-inflammatory and anti-carcinogenic properties in vivo, and these features have been related to interference with multiple targets including XIAPs, NFκB, STAT-3, Akt and mTOR. However, interference with these proteins requires relatively high concentrations of embelin (IC₅₀>4 μM) and cannot fully explain its bioactivity observed in several functional studies. Here we reveal human 5-lipoxygenase (5-LO) and microsomal prostaglandin E₂ synthase (mPGES)-1 as direct molecular targets of embelin. Thus, embelin potently suppressed the biosynthesis of eicosanoids by selective inhibition of 5-LO and mPGES-1 with IC₅₀=0.06 and 0.2 μM, respectively. In intact human polymorphonuclear leukocytes and monocytes, embelin consistently blocked the biosynthesis of various 5-LO products regardless of the stimulus (fMLP or A23187) with IC₅₀=0.8-2 μM. Neither the related human 12- and 15-LO nor the cyclooxygenases-1 and -2 or cytosolic phospholipase A₂ were significantly affected by 10 μM embelin. Inhibition of 5-LO and mPGES-1 by embelin was (I) essentially reversible after wash-out, (II) not impaired at higher substrate concentrations, (III) unaffected by inclusion of Triton X-100, and (IV) did not correlate to its proposed antioxidant properties. Docking simulations suggest concrete binding poses in the active sites of both 5-LO and mPGES-1. Because 5-LO- and mPGES-1-derived eicosanoids play roles in inflammation and cancer, the interference of embelin with these enzymes may contribute to its biological effects and suggests embelin as novel chemotype for development of dual 5-LO/mPGES-1 inhibitors.


The Journal of Infectious Diseases | 2014

Human Natural Killer Cells Acting as Phagocytes Against Candida albicans and Mounting an Inflammatory Response That Modulates Neutrophil Antifungal Activity

Jessica Voigt; Kerstin Hünniger; Maria Bouzani; Ilse D. Jacobsen; Dagmar Barz; Bernhard Hube; Jürgen Löffler; Oliver Kurzai

BACKGROUND Natural killer (NK) cells are innate lymphocytes with potent cytotoxic activity. Whereas activity of NK cells has been demonstrated against the fungal pathogens Aspergillus fumigatus and Cryptococcus neoformans, little was known about their interaction with Candida albicans. METHODS Primary human NK cells were isolated from buffy coats, primed with a cytokine cocktail and used for confrontation assays with C. albicans. Interaction was monitored and quantified using live cell imaging, confocal microscopy, flow cytometry, and enzyme-linked immunosorbent assay. RESULTS Human NK cells actively recognized C. albicans, resulting in degranulation and secretion of granulocyte-macrophage colony-stimulating factor, interferon γ, and tumor necrosis factor α . Uniquely, activation of NK cells was triggered by actin-dependent phagocytosis. Antifungal activity of NK cells against C. albicans could be detected and mainly attributed to secreted perforin. However, NK cells were unable to inhibit filamentation of C. albicans. Human polymorphonuclear neutrophils (PMNs) counteracted the proinflammatory reaction of NK cells by preventing direct contact between NK cells and the fungal pathogen. Activation of PMNs was enhanced in the presence of NK cells, resulting in increased fungicidal activity. CONCLUSIONS Our results show a unique pattern of NK cell interaction with C. albicans, which involves direct proinflammatory activation and modulation of PMN activity. For the first time, phagocytosis of a pathogen is shown to contribute to NK cell activation.


The FASEB Journal | 2011

Testosterone suppresses phospholipase D, causing sex differences in leukotriene biosynthesis in human monocytes

Carlo Pergola; Anja Rogge; Gabriele Dodt; Hinnak Northoff; Christina Weinigel; Dagmar Barz; Olof Rådmark; Lidia Sautebin; Oliver Werz

Sex disparities in inflammation have been reported, but the cellular and molecular basis for these discrepancies is unknown. Monocytes are central effector cells in immunity and possess high capacities to produce proinflammatory leukotrienes (LTs). Here, we investigated sex differences in the activation of 5‐lipoxygenase (5‐LO), the key enzyme in LT biosynthesis, in human peripheral monocytes. In cells from females, 5‐LO product formation was 1.8‐fold higher than in cells from males, as evaluated by HPLC. When female monocytes were resuspended in plasma from males, 5‐LO products were significantly lower than in female plasma. Interestingly, 5α‐dihydrotestosterone (5α‐DHT, 10 nM) repressed LT synthesis in female cells down to the levels observed in males, while estradiol (100 nM) was without effect, and progesterone (100 nM) caused only a slight inhibition. 5α‐DHT (10 nM) caused ERK phosphorylation and inhibition of phospholipase D (PLD), as evaluated by Western blot and measurement of PLD activity via radioenzymatic diacylglyceride (DAG) and nonradioactive choline assays. Accordingly, PLD activity and DAG formation were 1.4‐ to 1.8‐fold lower in male vs. female monocytes connected to increased ERK phosphorylation. Our data indicate that ERK activation by androgens in monocytes represses PLD activity, resulting in impaired 5‐LO product formation due to lack of activating DAGs.—Pergola, C., Rogge, A., Dodt, G., Northoff, H., Weinigel, C., Barz, D., Rådmark, O., Sautebin, L., Werz, O. Testosterone suppresses phospholipase D, causing sex differences in leukotriene biosynthesis in human monocytes. FASEB J. 25, 3377–3387 (2011). www.fasebj.org


PLOS ONE | 2012

Persistence versus escape: Aspergillus terreus and Aspergillus fumigatus employ different strategies during interactions with macrophages.

Silvia Slesiona; Markus Gressler; Michael Mihlan; Christoph Zaehle; Martin Schaller; Dagmar Barz; Bernhard Hube; Ilse D. Jacobsen; Matthias Brock

Invasive bronchopulmonary aspergillosis (IBPA) is a life-threatening disease in immunocompromised patients. Although Aspergillus terreus is frequently found in the environment, A. fumigatus is by far the main cause of IBPA. However, once A. terreus establishes infection in the host, disease is as fatal as A. fumigatus infections. Thus, we hypothesized that the initial steps of disease establishment might be fundamentally different between these two species. Since alveolar macrophages represent one of the first phagocytes facing inhaled conidia, we compared the interaction of A. terreus and A. fumigatus conidia with alveolar macrophages. A. terreus conidia were phagocytosed more rapidly than A. fumigatus conidia, possibly due to higher exposure of β-1,3-glucan and galactomannan on the surface. In agreement, blocking of dectin-1 and mannose receptors significantly reduced phagocytosis of A. terreus, but had only a moderate effect on phagocytosis of A. fumigatus. Once phagocytosed, and in contrast to A. fumigatus, A. terreus did not inhibit acidification of phagolysosomes, but remained viable without signs of germination both in vitro and in immunocompetent mice. The inability of A. terreus to germinate and pierce macrophages resulted in significantly lower cytotoxicity compared to A. fumigatus. Blocking phagolysosome acidification by the v-ATPase inhibitor bafilomycin increased A. terreus germination rates and cytotoxicity. Recombinant expression of the A. nidulans wA naphthopyrone synthase, a homologue of A. fumigatus PksP, inhibited phagolysosome acidification and resulted in increased germination, macrophage damage and virulence in corticosteroid-treated mice. In summary, we show that A. terreus and A. fumigatus have evolved significantly different strategies to survive the attack of host immune cells. While A. fumigatus prevents phagocytosis and phagolysosome acidification and escapes from macrophages by germination, A. terreus is rapidly phagocytosed, but conidia show long-term persistence in macrophages even in immunocompetent hosts.


Journal of Medicinal Chemistry | 2013

Aminothiazole-Featured Pirinixic Acid Derivatives As Dual 5-Lipoxygenase and Microsomal Prostaglandin E2 Synthase-1 Inhibitors with Improved Potency and Efficiency in Vivo

Thomas Hanke; Friederike Dehm; Stefanie Liening; Sven-Desiderius Popella; Jonas Maczewsky; Max Pillong; Jens Kunze; Christina Weinigel; Dagmar Barz; Astrid Kaiser; Mario Wurglics; Michael Lämmerhofer; Gisbert Schneider; Lidia Sautebin; Manfred Schubert-Zsilavecz; Oliver Werz

Dual inhibition of microsomal prostaglandin E2 synthase-1 (mPGES-1) and 5-lipoxygenase (5-LO) is currently pursued as potential pharmacological strategy for treatment of inflammation and cancer. Here we present a series of 26 novel 2-aminothiazole-featured pirinixic acid derivatives as dual 5-LO/mPGES-1 inhibitors with improved potency (exemplified by compound 16 (2-[(4-chloro-6-{[4-(naphthalen-2-yl)-1,3-thiazol-2-yl]amino}pyrimidin-2-yl)sulfanyl]octanoic acid) with IC50 = 0.3 and 0.4 μM, respectively) and bioactivity in vivo. Computational analysis presumes binding sites of 16 at the tip of the 5-LO catalytic domain and within a subpocket of the mPGES-1 active site. Compound 16 (10 μM) hardly suppressed cyclooxygenase (COX)-1/2 activities, failed to inhibit 12/15-LOs, and is devoid of radical scavenger properties. Finally, compound 16 reduced vascular permeability and inflammatory cell infiltration in a zymosan-induced mouse peritonitis model accompanied by impaired levels of cysteinyl-leukotrienes and prostaglandin E2. Together, 2-aminothiazole-featured pirinixic acids represent potent dual 5-LO/mPGES-1 inhibitors with an attractive pharmacological profile as anti-inflammatory drugs.


Journal of Medicinal Chemistry | 2014

SAR Studies on Curcumin’s Pro-inflammatory Targets: Discovery of Prenylated Pyrazolocurcuminoids as Potent and Selective Novel Inhibitors of 5-Lipoxygenase

Andreas Koeberle; Eduardo Muñoz; Giovanni Appendino; Alberto Minassi; Simona Pace; Antonietta Rossi; Christina Weinigel; Dagmar Barz; Lidia Sautebin; Diego Caprioglio; Juan A. Collado; Oliver Werz

The anticarcinogenic and anti-inflammatory properties of curcumin have been extensively investigated, identifying prostaglandin E2 synthase (mPGES)-1 and 5-lipoxygenase (5-LO), key enzymes linking inflammation with cancer, as high affinity targets. A comparative structure-activity study revealed three modifications dissecting mPGES-1/5-LO inhibition, namely (i) truncation of the acidic, enolized dicarbonyl moiety and/or replacement by pyrazole, (ii) hydrogenation of the interaryl linker, and (iii) (dihydro)prenylation. The prenylated pyrazole analogue 11 selectively inhibited 5-LO, outperforming curcumin by a factor of up to 50, and impaired zymosan-induced mouse peritonitis along with reduced 5-LO product levels. Other pro-inflammatory targets of curcumin (i.e., mPGES-1, cyclooxygenases, 12/15-LOs, nuclear factor-κB, nuclear factor-erythroid 2-related factor-2, and signal transducer and activator of transcription 3) were hardly affected by 11. The strict structural requirements for mPGES-1 and 5-LO inhibition strongly suggest that specific interactions rather than redox or membrane effects underlie the inhibition of mPGES-1 and 5-LO by curcumin.


Biochemical Journal | 2009

PI3Kgamma controls oxidative bursts in neutrophils via interactions with PKCalpha and p47phox.

Katja Lehmann; Jörg P. Müller; Bernhard Schlott; Philipp Skroblin; Dagmar Barz; Johannes Norgauer; Reinhard Wetzker

Neutrophils release reactive oxygen species (ROS) as part of the innate inflammatory immune response. Phosphoinositide 3-kinase gamma (PI3Kgamma), which is induced by the bacterial peptide N-formylmethionyl-leucyl-phenylalanine (fMLP), has been identified as an essential intracellular mediator of ROS production. However, the complex signalling reactions that link PI3Kgamma with ROS synthesis by NADPH oxidase have not yet been described in detail. We found that activation of neutrophils by fMLP triggers the association of PI3Kgamma with protein kinase Calpha (PKCalpha). Specific inhibition of PI3Kgamma suppresses fMLP-mediated activation of PKCalpha activity and ROS production, suggesting that the protein kinase activity of PI3Kgamma is involved. Our data suggest that the direct interaction of PI3Kgamma with PKCalpha forms a discrete regulatory module of fMLP-dependent ROS production in neutrophils.


European Journal of Medicinal Chemistry | 2012

Design and synthesis of a second series of triazole-based compounds as potent dual mPGES-1 and 5-lipoxygenase inhibitors.

Maria Giovanna Chini; Rosa De Simone; Ines Bruno; Raffaele Riccio; Friederike Dehm; Christina Weinigel; Dagmar Barz; Oliver Werz; Giuseppe Bifulco

Microsomal prostaglandin E(2) synthase (mPGES)-1 and 5-lipoxygenase (5-LO) are pivotal enzymes in the biosynthesis of the pro-inflammatory PGE(2) and leukotrienes, respectively. The design and synthesis of a second series of mPGES-1 inhibitors based on a triazole scaffold are described. Our studies allowed us to draw a tentative SAR profile and to optimize this series with the identification of compounds 10, 11 and 14-15 which displayed potent mPGES-1 inhibition in a cell-free assay. In addition, compounds 5, 10, 12 and 14-16 also blocked 5-LO activity in cell-free and cell-based test systems, emerging as very promising candidates for the development of safer and more effective anti-inflammatory drugs.


European Journal of Medical Research | 2009

DIFFERENTIAL NUMBER OF CD34+, CD133+ AND CD34+/CD133+ CELLS IN PERIPHERAL BLOOD OF PATIENTS WITH CONGESTIVE HEART FAILURE

Michael Fritzenwanger; F Lorenz; Christian Jung; M Fabris; H Thude; Dagmar Barz; Hans R. Figulla

BackgroundEndothelial progenitor cells (EPC) which are characterised by the simulateous expression of CD34, CD133 and vascular endothelial growth receptor 2 (VEGF 2) are involved in the pathophysiology of congestive heart failure (CHF) and their number and function is reduced in CHF. But so far our knowledge about the number of circulating hematopoietic stem/progenitor cells (CPC) expressing the early hematopoietic marker CD133 and CD34 in CHF is spares and therefore we determined their number and correlated them with New York Heart Association (NYHA) functional class.MethodsCD34 and CD133 surface expression was quantified by flow cytometry in the peripheral venous blood of 41 healthy adults and 101 patients with various degrees of CHF.ResultsCD34+, CD133+ and CD34+/CD133+ cells correlated inversely with age. Both the number of CD34+ and of CD34+/CD133+ cells inversely correlated with NYHA functional class. The number of CD133+ cells was not affected by NYHA class. Furthermore the number of CD133+ cells did not differ between control and CHF patients.ConclusionIn CHF the release of CD34+, CD133+ and CD34+/CD133+ cells from the bone marrow seems to be regulated differently. Modulating the releasing process in CHF may be a tool in CHF treatment.

Collaboration


Dive into the Dagmar Barz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge