Dagmar Heuer
Robert Koch Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dagmar Heuer.
Nature | 2010
Alexander Karlas; Nikolaus Machuy; Yujin Shin; Klaus-Peter Pleissner; Anita Artarini; Dagmar Heuer; Daniel Becker; Hany Khalil; Lesley A. Ogilvie; Simone Hess; André P. Mäurer; Elke Müller; Thorsten Wolff; Thomas Rudel; Thomas F. Meyer
Influenza A virus, being responsible for seasonal epidemics and reoccurring pandemics, represents a worldwide threat to public health. High mutation rates facilitate the generation of viral escape mutants, rendering vaccines and drugs directed against virus-encoded targets potentially ineffective. In contrast, targeting host cell determinants temporarily dispensable for the host but crucial for virus replication could prevent viral escape. Here we report the discovery of 287 human host cell genes influencing influenza A virus replication in a genome-wide RNA interference (RNAi) screen. Using an independent assay we confirmed 168 hits (59%) inhibiting either the endemic H1N1 (119 hits) or the current pandemic swine-origin (121 hits) influenza A virus strains, with an overlap of 60%. Notably, a subset of these common hits was also essential for replication of a highly pathogenic avian H5N1 strain. In-depth analyses of several factors provided insights into their infection stage relevance. Notably, SON DNA binding protein (SON) was found to be important for normal trafficking of influenza virions to late endosomes early in infection. We also show that a small molecule inhibitor of CDC-like kinase 1 (CLK1) reduces influenza virus replication by more than two orders of magnitude, an effect connected with impaired splicing of the viral M2 messenger RNA. Furthermore, influenza-virus-infected p27-/- (cyclin-dependent kinase inhibitor 1B; Cdkn1b) mice accumulated significantly lower viral titres in the lung, providing in vivo evidence for the importance of this gene. Thus, our results highlight the potency of genome-wide RNAi screening for the dissection of virus–host interactions and the identification of drug targets for a broad range of influenza viruses.
Nature | 2009
Dagmar Heuer; Anette Rejman Lipinski; Nikolaus Machuy; Alexander Karlas; Andrea Wehrens; Frank Siedler; Volker Brinkmann; Thomas F. Meyer
The obligate intracellular bacterium Chlamydia trachomatis survives and replicates within a membrane-bound vacuole, termed the inclusion, which intercepts host exocytic pathways to obtain nutrients. Like many other intracellular pathogens, C. trachomatis has a marked requirement for host cell lipids, such as sphingolipids and cholesterol, produced in the endoplasmic reticulum and the Golgi apparatus. However, the mechanisms by which intracellular pathogens acquire host cell lipids are not well understood. In particular, no host cell protein responsible for transporting Golgi-derived lipids to the chlamydial inclusions has yet been identified. Here we show that Chlamydia infection in human epithelial cells induces Golgi fragmentation to generate Golgi ministacks surrounding the bacterial inclusion. Ministack formation is triggered by the proteolytic cleavage of the Golgi matrix protein golgin-84. Inhibition of golgin-84 truncation prevents Golgi fragmentation, causing a block in lipid acquisition and maturation of C. trachomatis. Golgi fragmentation by means of RNA-interference-mediated knockdown of distinct Golgi matrix proteins before infection enhances bacterial maturation. Our data functionally connect bacteria-induced golgin-84 cleavage, Golgi ministack formation, lipid acquisition and intracellular pathogen growth. We show that C. trachomatis subverts the structure and function of an entire host cell organelle for its own advantage.
PLOS Pathogens | 2009
Anette Rejman Lipinski; Julia Heymann; Charlotte Meissner; Alexander Karlas; Volker Brinkmann; Thomas F. Meyer; Dagmar Heuer
Many intracellular pathogens that replicate in special membrane bound compartments exploit cellular trafficking pathways by targeting small GTPases, including Rab proteins. Members of the Chlamydiaceae recruit a subset of Rab proteins to their inclusions, but the significance of these interactions is uncertain. Using RNA interference, we identified Rab6 and Rab11 as important regulators of Chlamydia infections. Depletion of either Rab6 or Rab11, but not the other Rab proteins tested, decreased the formation of infectious particles. We further examined the interplay between these Rab proteins and the Golgi matrix components golgin-84 and p115 with regard to Chlamydia-induced Golgi fragmentation. Silencing of the Rab proteins blocked Chlamydia-induced and golgin-84 knockdown-stimulated Golgi disruption, whereas Golgi fragmentation was unaffected in p115 depleted cells. Interestingly, p115-induced Golgi fragmentation could rescue Chlamydia propagation in Rab6 and Rab11 knockdown cells. Furthermore, transport of nutrients to Chlamydia, as monitored by BODIPY-Ceramide, was inhibited by Rab6 and Rab11 knockdown. Taken together, our results demonstrate that Rab6 and Rab11 are key regulators of Golgi stability and further support the notion that Chlamydia subverts Golgi structure to enhance its intracellular development.
Infection and Immunity | 2005
Marieluise Kirchner; Dagmar Heuer; Thomas F. Meyer
ABSTRACT Neisseria gonorrhoeae is a gram-negative bacterial pathogen which infects the human mucosal epithelium. An early critical event in neisserial infection is the type IV pilus-mediated adherence to the host cell. The PilC protein, located on the pilus tip, has earlier been identified as the major pilus adhesin. Previous studies suggested that the cell surface protein CD46 is a pilus receptor for Neisseria. We investigated the role of CD46 in pilus-mediated gonococcal infection of epithelial cells. Differences in binding efficiencies of piliated gonococci as well as purified pilus adhesin PilC2 on human epithelial cell lines did not correlate to the level of surface-expressed CD46. Additionally, no binding of piliated gonococci or PilC2 protein was observed on CD46-transfected CHO and MDCK cells. Furthermore, specific down-regulation of CD46 expression in human epithelial cell lines by RNA interference did not alter the binding efficiency of piliated gonococci or purified PilC2 protein, although other CD46-dependent processes, such as measles virus infection and C3b cleavage, were significantly reduced. These data support the notion that pilus-mediated gonococcal infection of epithelial cells can occur in a CD46-independent manner, thus questioning the function of CD46 as an essential pilus receptor for pathogenic neisseriae.
Cellular Microbiology | 2003
Dagmar Heuer; Volker Brinkmann; Thomas F. Meyer; Agnes J. Szczepek
Chlamydial protease‐like activity factor (CPAF) is secreted to the cytoplasm of the infected cells where it proteolytically cleaves eukaryotic transcription factor RFX5. Here, we determined the localization pattern of CPAF during the course of an acute and persistent in vitro infection of the epithelial cell line HEp‐2 with Chlamydophila pneumoniae strain VR1310. Using immunoblotting, confocal microscopy and electron microscopy, we found CPAF in the inclusion lumen or associated with bacteria during the first 48 h of an acute infection. Seventy‐two hours and later, CPAF was present predominantly in the cytoplasm of the infected cells. Translocation of CPAF into cytoplasm correlated in time with degradation of the transcription factor RFX5, as confirmed by immunoblotting. Interestingly, during the persistent infection induced by either IFN‐γ or iron limitation CPAF translocation to the cytoplasm was inhibited resulting in unaffected or only partially reduced levels of RFX5. Based on presented findings, we propose that CPAF translocation to the cytoplasm is separated from its production. The translocation mechanism appears to be fully active during an acute infection; however, it is fully or partially inhibited during persistent infection induced by IFN‐γ or by iron limitation respectively. Consequently, this work demonstrates the importance of subcellular localization of CPAF for the characteristics of chlamydial acute and persistent infection in epithelial HEp‐2 cells.
PLOS Pathogens | 2011
Jan G. Christian; Julia Heymann; Stefan A. Paschen; Juliane Vier; Linda Schauenburg; Jan Rupp; Thomas F. Meyer; Georg Häcker; Dagmar Heuer
Chlamydiae are obligate intracellular bacteria that propagate in a cytosolic vacuole. Recent work has shown that growth of Chlamydia induces the fragmentation of the Golgi apparatus (GA) into ministacks, which facilitates the acquisition of host lipids into the growing inclusion. GA fragmentation results from infection-associated cleavage of the integral GA protein, golgin-84. Golgin-84-cleavage, GA fragmentation and growth of Chlamydia trachomatis can be blocked by the peptide inhibitor WEHD-fmk. Here we identify the bacterial protease chlamydial protease-like activity factor (CPAF) as the factor mediating cleavage of golgin-84 and as the target of WEHD-fmk-inhibition. WEHD-fmk blocked cleavage of golgin-84 as well as cleavage of known CPAF targets during infection with C. trachomatis and C. pneumoniae. The same effect was seen when active CPAF was expressed in non-infected cells and in a cell-free system. Ectopic expression of active CPAF in non-infected cells was sufficient for GA fragmentation. GA fragmentation required the small GTPases Rab6 and Rab11 downstream of CPAF-activity. These results define CPAF as the first protein that is essential for replication of Chlamydia. We suggest that this role makes CPAF a potential anti-infective therapeutic target.
PLOS Pathogens | 2015
Lukas Aeberhard; Sebastian Banhart; Martina Fischer; Nico Jehmlich; Laura Rose; Sophia Koch; Michael Laue; Bernhard Y. Renard; Frank Schmidt; Dagmar Heuer
Chlamydia trachomatis is an important human pathogen that replicates inside the infected host cell in a unique vacuole, the inclusion. The formation of this intracellular bacterial niche is essential for productive Chlamydia infections. Despite its importance for Chlamydia biology, a holistic view on the protein composition of the inclusion, including its membrane, is currently missing. Here we describe the host cell-derived proteome of isolated C. trachomatis inclusions by quantitative proteomics. Computational analysis indicated that the inclusion is a complex intracellular trafficking platform that interacts with host cells’ antero- and retrograde trafficking pathways. Furthermore, the inclusion is highly enriched for sorting nexins of the SNX-BAR retromer, a complex essential for retrograde trafficking. Functional studies showed that in particular, SNX5 controls the C. trachomatis infection and that retrograde trafficking is essential for infectious progeny formation. In summary, these findings suggest that C. trachomatis hijacks retrograde pathways for effective infection.
International Journal of Medical Microbiology | 2014
Michael R. Knittler; Angela Berndt; Selina Böcker; Pavel Dutow; Frank Hänel; Dagmar Heuer; Danny Kägebein; Andreas Klos; Sophia Koch; Elisabeth M. Liebler-Tenorio; Carola Ostermann; Petra Reinhold; Hans Peter Saluz; Gerhard Schöfl; Philipp Sehnert; Konrad Sachse
The distinctive and unique features of the avian and mammalian zoonotic pathogen Chlamydia (C.) psittaci include the fulminant course of clinical disease, the remarkably wide host range and the high proportion of latent infections that are not leading to overt disease. Current knowledge on associated diseases is rather poor, even in comparison to other chlamydial agents. In the present paper, we explain and summarize the major findings of a national research network that focused on the elucidation of host-pathogen interactions in vitro and in animal models of C. psittaci infection, with the objective of improving our understanding of genomics, pathology, pathophysiology, molecular pathogenesis and immunology, and conceiving new approaches to therapy. We discuss new findings on comparative genome analysis, the complexity of pathophysiological interactions and systemic consequences, local immune response, the role of the complement system and antigen presentation pathways in the general context of state-of-the-art knowledge on chlamydial infections in humans and animals and single out relevant research topics to fill remaining knowledge gaps on this important yet somewhat neglected pathogen.
ChemBioChem | 2013
Krishna P. Bhabak; Anett Hauser; Susanne Redmer; Sebastian Banhart; Dagmar Heuer; Christoph Arenz
Fretful novelty: We developed two novel doubly labelled fluorescent ceramide analogues that exhibit significant FRET and undergo hydrolysis by ceramidases. We present a fluorescent sphingolipid FRET probe that allows homogeneous ratiometric determination of enzyme activity in real-time.
Antimicrobial Agents and Chemotherapy | 2014
Sebastian Banhart; Essa M. Saied; Andrea Martini; Sophia Koch; Lukas Aeberhard; Kazimierz Madela; Christoph Arenz; Dagmar Heuer
ABSTRACT Chlamydia trachomatis is a medically important human pathogen causing different diseases, including trachoma, the leading cause of preventable blindness in developing countries, and sexually transmitted infections that can lead to infertility and ectopic pregnancies. There is no vaccine against C. trachomatis at present. Broad-spectrum antibiotics are used as standard therapy to treat the infection but have unwanted side effects, such as inducing persistent or recurring infections and affecting the host microbiome, necessitating the development of novel anti-Chlamydia therapies. Here, we describe the establishment of a robust, fast, and simple plaque assay using liquid overlay medium (LOM) for the identification of anti-Chlamydia compounds. Using the LOM plaque assay, we identified nitrobenzoxadiazole (NBD)-labeled 1-O-methyl-ceramide-C16 as a compound that efficiently inhibits C. trachomatis replication without affecting the viability of the host cell. Further detailed analyses indicate that 1-O-methyl-NBD-ceramide-C16 acts outside the inclusion. Thereby, 1-O-methyl-NBD-ceramide-C16 represents a lead compound for the development of novel anti-Chlamydia drugs and furthermore constitutes an agent to illuminate sphingolipid trafficking pathways in Chlamydia infections.