Dagmar Kainmueller
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dagmar Kainmueller.
visual computing for biomedicine | 2008
Heiko Seim; Dagmar Kainmueller; Markus O. Heller; Hans Lamecker; Stefan Zachow; Hans-Christian Hege
We present an algorithm for automatic segmentation of the human pelvic bones from CT datasets that is based on the application of a statistical shape model. The proposed method is divided into three steps: 1) The averaged shape of the pelvis model is initially placed within the CT data using the Generalized Hough Transform, 2) the statistical shape model is then adapted to the image data by a transformation and variation of its shape modes, and 3) a final free-form deformation step based on optimal graph searching is applied to overcome the restrictive character of the statistical shape representation. We thoroughly evaluated the method on 50 manually segmented CT datasets by performing a leave-one-out study. The Generalized Hough Transform proved to be a reliable method for an automatic initial placement of the shape model within the CT data. Compared to the manual gold standard segmentations, our automatic segmentation approach produced an average surface distance of 1.2 ± 0.3mm after the adaptation of the statistical shape model, which could be reduced to 0.7±0.3mm using a final free-form deformation step. Together with an average segmentation time of less than 5 minutes, the results of our study indicate that our method meets the requirements of clinical routine.
international conference of the ieee engineering in medicine and biology society | 2009
Dagmar Kainmueller; Hans Lamecker; Stefan Zachow; Hans-Christian Hege
In this paper we propose a framework for fully automatic, robust and accurate segmentation of the human pelvis and proximal femur in CT data. We propose a composite statistical shape model of femur and pelvis with a flexible hip joint, for which we extend the common definition of statistical shape models as well as the common strategy for their adaptation. We do not analyze the joint flexibility statistically, but model it explicitly by rotational parameters describing the bent in a ball-and-socket joint. A leave-one-out evaluation on 50 CT volumes shows that image driven adaptation of our composite shape model robustly produces accurate segmentations of both proximal femur and pelvis. As a second contribution, we evaluate a fine grain multi-object segmentation method based on graph optimization. It relies on accurate initializations of femur and pelvis, which our composite shape model can generate. Simultaneous optimization of both femur and pelvis yields more accurate results than separate optimizations of each structure. Shape model adaptation and graph based optimization are embedded in a fully automatic framework.
medical image computing and computer assisted intervention | 2009
Dagmar Kainmueller; Hans Lamecker; Heiko Seim; Max Zinser; Stefan Zachow
The exact localization of the mandibular nerve with respect to the bone is important for applications in dental implantology and maxillofacial surgery. Cone beam computed tomography (CBCT), often also called digital volume tomography (DVT), is increasingly utilized in maxillofacial or dental imaging. Compared to conventional CT, however, soft tissue discrimination is worse due to a reduced dose. Thus, small structures like the alveolar nerves are even harder recognizable within the image data. We show that it is nonetheless possible to accurately reconstruct the 3D bone surface and the course of the nerve in a fully automatic fashion, with a method that is based on a combined statistical shape model of the nerve and the bone and a Dijkstra-based optimization procedure. Our method has been validated on 106 clinical datasets: the average reconstruction error for the bone is 0.5 +/- 0.1 mm, and the nerve can be detected with an average error of 1.0 +/- 0.6 mm.
ISBMS '08 Proceedings of the 4th international symposium on Biomedical Simulation | 2008
Dagmar Kainmueller; Hans Lamecker; Stefan Zachow; Hans-Christian Hege
For biomechanical simulations, the segmentation of multiple adjacent anatomical structures from medical image data is often required. If adjacent structures are hardly distinguishable in image data, automatic segmentation methods for single structures in general do not yield sufficiently accurate results. To improve segmentation accuracy in these cases, knowledge about adjacent structures must be exploited. Optimal graph searching based on deformable surface models allows for a simultaneous segmentation of multiple adjacent objects. However, this method requires a correspondence relation between vertices of adjacent surface meshes. Line segments, each containing two corresponding vertices, may then serve as shared displacement directions in the segmentation process. The problem is how to define suitable correspondences on arbitrary surfaces. In this paper we propose a scheme for constructing a correspondence relation in adjacent regions of two arbitrary surfaces. When applying the thus generated shared displacement directions in segmentation with deformable surfaces, overlap of the surfaces is guaranteed not to occur. We show correspondence relations for regions on a femoral head and acetabulum and other adjacent structures, as well as preliminary segmentation results obtained by a graph cut algorithm.
medical image computing and computer assisted intervention | 2015
David L. Richmond; Dagmar Kainmueller; Ben Glocker; Carsten Rother; Gene Myers
Accurate localization, identification and segmentation of vertebrae is an important task in medical and biological image analysis. The prevailing approach to solve such a task is to first generate pixelindependent features for each vertebra, e.g. via a random forest predictor, which are then fed into an MRF-based objective to infer the optimal MAP solution of a constellation model. We abandon this static, twostage approach and mix feature generation with model-based inference in a new, more flexible, way. We evaluate our method on two data sets with different objectives. The first is semantic segmentation of a 21-part body plan of zebrafish embryos in microscopy images, and the second is localization and identification of vertebrae in benchmark human CT.
Medical Image Analysis | 2013
Dagmar Kainmueller; Hans Lamecker; Markus O. Heller; Britta Weber; Hans-Christian Hege; Stefan Zachow
Deformable surface models are often represented as triangular meshes in image segmentation applications. For a fast and easily regularized deformation onto the target object boundary, the vertices of the mesh are commonly moved along line segments (typically surface normals). However, in case of high mesh curvature, these lines may not intersect with the target boundary at all. Consequently, certain deformations cannot be achieved. We propose omnidirectional displacements for deformable surfaces (ODDS) to overcome this limitation. ODDS allow each vertex to move not only along a line segment but within the volumetric inside of a surrounding sphere, and achieve globally optimal deformations subject to local regularization constraints. However, allowing a ball-shaped instead of a linear range of motion per vertex significantly increases runtime and memory. To alleviate this drawback, we propose a hybrid approach, fastODDS, with improved runtime and reduced memory requirements. Furthermore, fastODDS can also cope with simultaneous segmentation of multiple objects. We show the theoretical benefits of ODDS with experiments on synthetic data, and evaluate ODDS and fastODDS quantitatively on clinical image data of the mandible and the hip bones. There, we assess both the global segmentation accuracy as well as local accuracy in high curvature regions, such as the tip-shaped mandibular coronoid processes and the ridge-shaped acetabular rims of the hip bones.
medical image computing and computer assisted intervention | 2012
Hans Lamecker; Dagmar Kainmueller; Stefan Zachow
We propose a fully automatic method for tooth detection and classification in CT or cone-beam CT image data. First we compute an accurate segmentation of the maxilla bone. Based on this segmentation, our method computes a complete and optimal separation of the row of teeth into 16 subregions and classifies the resulting regions as existing or missing teeth. This serves as a prerequisite for further individual tooth segmentation. We show the robustness of our approach by providing extensive validation on 43 clinical head CT scans.
medical image computing and computer assisted intervention | 2014
Dagmar Kainmueller; Florian Jug; Carsten Rother; Gene Myers
In this work we present a novel technique we term active graph matching, which integrates the popular active shape model into a sparse graph matching problem. This way we are able to combine the benefits of a global, statistical deformation model with the benefits of a local deformation model in form of a second-order random field. We present a new iterative energy minimization technique which achieves empirically good results. This enables us to exceed state-of-the art results for the task of annotating nuclei in 3D microscopic images of C. elegans. Furthermore with the help of the generalized Hough transform we are able to jointly segment and annotate a large set of nuclei in a fully automatic fashion for the first time.
Bildverarbeitung für die Medizin | 2011
Matthias Bindernagel; Dagmar Kainmueller; Heiko Seim; Hans Lamecker; Stefan Zachow; Hans-Christian Hege
In this work we present an articulated statistical shape model (ASSM) of the human knee. The model incorporates statistical shape variation plus explicit degrees of freedom that model physiological joint motion. We also present a strategy for segmentation of the knee joint from medical image data. We show the potential of the model via an evaluation on a set of 40 clinical MRI datasets with manual expert segmentations available.
computer vision and pattern recognition | 2016
Loïc Royer; David L. Richmond; Carsten Rother; Bjoern Andres; Dagmar Kainmueller
Segmenting an image into multiple components is a central task in computer vision. In many practical scenarios, prior knowledge about plausible components is available. Incorporating such prior knowledge into models and algorithms for image segmentation is highly desirable, yet can be non-trivial. In this work, we introduce a new approach that allows, for the first time, to constrain some or all components of a segmentation to have convex shapes. Specifically, we extend the Minimum Cost Multicut Problem by a class of constraints that enforce convexity. To solve instances of this NP-hard integer linear program to optimality, we separate the proposed constraints in the branch-and-cut loop of a state-of-the-art ILP solver. Results on photographs and micrographs demonstrate the effectiveness of the approach as well as its advantages over the state-of-the-art heuristic.