Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dagmar Stoiber is active.

Publication


Featured researches published by Dagmar Stoiber.


The EMBO Journal | 1998

Stat1 combines signals derived from IFN-gamma and LPS receptors during macrophage activation.

Pavel Kovarik; Dagmar Stoiber; Michael Novy; Thomas Decker

Complete activation of macrophages during immune responses results from stimulation with the activating cytokine interferon‐γ (IFN‐γ) and a second stimulus, usually a microbial product. Bacterial infection of macrophages, or treatment with bacterial lipopolysaccharide (LPS), resulted in rapid Stat1 phosphorylation on Ser727 (S727) independently of concomitant tyrosine phosphorylation. IFN‐γ also caused rapid phosphorylation of S727. In both situations, S727 phosphorylation was reduced by pre‐treatment of cells with the serine kinase inhibitor H7. When macrophages were treated sequentially or simultaneously with LPS and IFN‐γ, the pool of molecules phosphorylated on both Tyr701 (Y701) and S727 was strongly increased. Consistently, Stat1‐dependent transcription in response to IFN‐γ was significantly enhanced if the cells were pre‐treated with bacterial LPS. The relative amount of S727‐phosphorylated Stat1 in the non‐tyrosine phosphorylated fraction was considerably smaller than that in the tyrosine‐phosphorylated fraction. No evidence was found for an effect of S727 phosphorylation on the phosphorylation of Y701 by IFN‐γ. Thus, serine and tyrosine phosphorylation of Stat1 are caused independently of each other, but the serine kinase may recognize tyrosine‐phosphorylated Stat1 preferentially in the course of an IFN‐γ response. The data suggest Stat1 to be a convergence point for immunological stimuli in a macrophage proinflammatory response.


Journal of Immunology | 2002

Production of Type I IFN Sensitizes Macrophages to Cell Death Induced by Listeria monocytogenes

Silvia Stockinger; Tilo Materna; Dagmar Stoiber; Lourdes Bayr; Ralf Steinborn; Thomas Kolbe; Hermann Unger; Trinad Chakraborty; David E. Levy; Mathias Müller; Thomas Decker

Type I IFNs (IFN-α/β) modulate innate immune responses. Here we show activation of transcription factor IFN regulatory factor 3, the synthesis of large amounts of IFN-β mRNA, and type I IFN signal transduction in macrophages infected with Listeria monocytogenes. Expression of the bacterial virulence protein listeriolysin O was necessary, but not sufficient, for efficient IFN-β production. Signaling through a pathway involving the type I IFN receptor and Stat1 sensitized macrophages to L. monocytogenes-induced cell death in a manner not requiring inducible NO synthase (nitric oxide synthase 2) or protein kinase R, potential effectors of type I IFN action during microbial infections. The data stress the importance of type I IFN for the course of infections with intracellular bacteria and suggest that factors other than listeriolysin O contribute to macrophage death during Listeria infection.


Blood | 2011

A novel Ncr1-Cre mouse reveals the essential role of STAT5 for NK-cell survival and development.

Eva Eckelhart; Wolfgang Warsch; Eva Zebedin; Olivia Simma; Dagmar Stoiber; Thomas Kolbe; Thomas Rülicke; Mathias Mueller; Emilio Casanova; Veronika Sexl

We generated a transgenic mouse line that expresses the Cre recombinase under the control of the Ncr1 (p46) promoter. Cre-mediated recombination was tightly restricted to natural killer (NK) cells, as revealed by crossing Ncr1-iCreTg mice to the eGFP-LSLTg reporter strain. Ncr1-iCreTg mice were further used to study NK cell-specific functions of Stat5 (signal transducers and activators of transcription 5) by generating Stat5(f/f) Ncr1-iCreTg animals. Stat5(f/f) Ncr1-iCreTg mice were largely devoid of NK cells in peripheral lymphoid organs. In the bone marrow, NK-cell maturation was abrogated at the NK cell-precursor stage. Moreover, we found that in vitro deletion of Stat5 in interleukin 2-expanded NK cells was incompatible with NK-cell viability. In vivo assays confirmed the complete abrogation of NK cell-mediated tumor control against B16F10-melanoma cells. In contrast, T cell-mediated tumor surveillance against MC38-adenocarcinoma cells was undisturbed. In summary, the results of our study show that STAT5 has a cell-intrinsic role in NK-cell development and that Ncr1-iCreTg mice are a powerful novel tool with which to study NK-cell development, biology, and function.


Journal of Immunology | 2001

Listeria monocytogenes modulates macrophage cytokine responses through STAT serine phosphorylation and the induction of suppressor of cytokine signaling 3.

Dagmar Stoiber; Silvia Stockinger; Peter Steinlein; Jan Kovarik; Thomas Decker

Macrophage activation as part of natural resistance to infection is caused by stimulation with IFN-γ and by the invading microorganisms or microbial products. Infection of macrophages with the Gram-positive bacterium Listeria monocytogenes for short periods before activation with IFN-γ increased the phosphorylation of transcription factor STAT1 at S727 and thereby the expression of IFN-γ-induced genes. By contrast, persistent infection with viable bacteria or treatment with heat-killed Listeria diminished IFN-γ-stimulated transcription and the phosphorylation of STAT1 at Y701. Decreased IFN-γ signaling correlated with the induction of suppressor of cytokine signaling 3 (SOCS3) mRNA and protein. Contrasting our previous findings with LPS, maximal synthesis of SOCS3 required both the immediate signals from Listeria receptors on the cell surface and the activity of a polypeptide secreted in response to bacterial infection. SOCS3 induction by the secreted protein could not be blocked by neutralizing Abs to IL-10 and it did not require the presence of STAT1. Consistent with the induction of SOCS3 activity, Listeria also inhibited activation of STAT5 by GM-CSF. The p38 mitogen-activated protein kinase was rapidly activated upon infection of macrophages with L. monocytogenes. Inhibition of p38 mitogen-activated protein kinase with the pyridinyl imidazol SB203580 abrogated both STAT1 S727 phosphorylation and the expression of SOCS3. The data suggest that STAT1 serine kinase and SOCS3 activity are hallmarks of immediate and delayed phases of influence by bacterial signals on signal transduction in response to IFN-γ.


Nature Communications | 2015

Disruption of STAT3 signalling promotes KRAS-induced lung tumorigenesis

Beatrice Grabner; Daniel Schramek; Kristina M. Mueller; Herwig P. Moll; Jasmin Svinka; Thomas Hoffmann; Eva Bauer; Leander Blaas; Natascha Hruschka; Katalin Zboray; Patricia Stiedl; Harini Nivarthi; Edith Bogner; Wolfgang Gruber; Thomas Mohr; Ralf Harun Zwick; Lukas Kenner; Valeria Poli; Fritz Aberger; Dagmar Stoiber; Gerda Egger; Harald Esterbauer; Johannes Zuber; Richard Moriggl; Robert Eferl; Balazs Gyorffy; Josef M. Penninger; Helmut Popper; Emilio Casanova

STAT3 is considered to play an oncogenic role in several malignancies including lung cancer; consequently, targeting STAT3 is currently proposed as therapeutic intervention. Here we demonstrate that STAT3 plays an unexpected tumour-suppressive role in KRAS mutant lung adenocarcinoma (AC). Indeed, lung tissue-specific inactivation of Stat3 in mice results in increased KrasG12D-driven AC initiation and malignant progression leading to markedly reduced survival. Knockdown of STAT3 in xenografted human AC cells increases tumour growth. Clinically, low STAT3 expression levels correlate with poor survival and advanced malignancy in human lung AC patients with smoking history, which are prone to KRAS mutations. Consistently, KRAS mutant lung tumours exhibit reduced STAT3 levels. Mechanistically, we demonstrate that STAT3 controls NF-κB-induced IL-8 expression by sequestering NF-κB within the cytoplasm, thereby inhibiting IL-8-mediated myeloid tumour infiltration and tumour vascularization and hence tumour progression. These results elucidate a novel STAT3–NF-κB–IL-8 axis in KRAS mutant AC with therapeutic and prognostic relevance.


Journal of Clinical Investigation | 2004

TYK2 is a key regulator of the surveillance of B lymphoid tumors

Dagmar Stoiber; Boris Kovacic; Christian Schuster; Carola Schellack; Marina Karaghiosoff; Rita Kreibich; Eva Weisz; Michaela Artwohl; Olaf C. Kleine; Mathias Müller; Sabina Baumgartner-Parzer; Jacques Ghysdael; Michael Freissmuth; Veronika Sexl

Aberrant activation of the JAK-STAT pathway has been implicated in tumor formation; for example, constitutive activation of JAK2 kinase or the enforced expression of STAT5 induces leukemia in mice. We show here that the Janus kinase TYK2 serves an opposite function. Mice deficient in TYK2 developed Abelson-induced B lymphoid leukemia/lymphoma as well as TEL-JAK2-induced T lymphoid leukemia with a higher incidence and shortened latency compared with WT controls. The cell-autonomous properties of Abelson murine leukemia virus-transformed (A-MuLV-transformed) TYK2(-/-) cells were unaltered, but the high susceptibility of TYK2(-/-) mice resulted from an impaired tumor surveillance, and accordingly, TYK2(-/-) A-MuLV-induced lymphomas were easily rejected after transplantation into WT hosts. The increased rate of leukemia/lymphoma formation was linked to a decreased in vitro cytotoxic capacity of TYK2(-/-) NK and NKT cells toward tumor-derived cells. RAG2/TYK2 double-knockout mice succumbed to A-MuLV-induced leukemia/lymphoma faster than RAG2(-/-)TYK2(+/-) mice. This defines NK cells as key players in tumor surveillance in Abelson-induced malignancies. Our observations provide compelling evidence that TYK2 is an important regulator of lymphoid tumor surveillance.


Blood | 2008

Leukemic challenge unmasks a requirement for PI3Kδ in NK cell–mediated tumor surveillance

Eva Zebedin; Olivia Simma; Christian Schuster; Eva M Putz; Sabine Fajmann; Wolfgang Warsch; Eva Eckelhart; Dagmar Stoiber; Eva Weisz; Johannes A. Schmid; Winfried F. Pickl; Christian Baumgartner; Peter Valent; Roland P. Piekorz; Michael Freissmuth; Veronika Sexl

Specific inhibitors of PI3K isoforms are currently evaluated for their therapeutic potential in leukemia. We found that BCR/ABL(+) human leukemic cells express PI3Kdelta and therefore explored its impact on leukemia development. Using PI3Kdelta-deficient mice, we define a dual role of PI3Kdelta in leukemia. We observed a growth-promoting effect in tumor cells and an essential function in natural killer (NK) cell-mediated tumor surveillance: Abelson-transformed PI3Kdelta-deficient cells induced leukemia in RAG2-deficient mice with an increased latency, indicating that PI3Kdelta accelerated leukemia progression in vivo. However, the absence of PI3Kdelta also affected NK cell-mediated tumor surveillance. PI3Kdelta-deficient NK cells failed to lyse a large variety of target cells because of defective degranulation, as also documented by capacitance recordings. Accordingly, transplanted leukemic cells killed PI3Kdelta-deficient animals more rapidly. As a net effect, no difference in disease latency in vivo was detected if both leukemic cells and NK cells lack PI3Kdelta. Other tumor models confirmed that PI3Kdelta-deficient mice succumbed more rapidly when challenged with T- or B-lymphoid leukemic or B16 melanoma cells. Thus, the action of PI3Kdelta in the NK compartment is as relevant to survival of the mice as the delayed tumor progression. This dual function must be taken into account when using PI3Kdelta inhibitors as antileukemic agents in clinical trials.


PLOS Pathogens | 2012

Conditional Stat1 ablation reveals the importance of interferon signaling for immunity to Listeria monocytogenes infection.

Elisabeth Kernbauer; Verena Maier; Dagmar Stoiber; Birgit Strobl; Christine Schneckenleithner; Veronika Sexl; Ursula Reichart; Boris Reizis; Ulrich Kalinke; Amanda M. Jamieson; Mathias Müller; Thomas Decker

Signal transducer and activator of transcription 1 (Stat1) is a key player in responses to interferons (IFN). Mutations of Stat1 cause severe immune deficiencies in humans and mice. Here we investigate the importance of Stat1 signaling for the innate and secondary immune response to the intracellular bacterial pathogen Listeria monocytogenes (Lm). Cell type-restricted ablation of the Stat1 gene in naïve animals revealed unique roles in three cell types: macrophage Stat1 signaling protected against lethal Lm infection, whereas Stat1 ablation in dendritic cells (DC) did not affect survival. T lymphocyte Stat1 reduced survival. Type I IFN (IFN-I) signaling in T lymphocytes reportedly weakens innate resistance to Lm. Surprisingly, the effect of Stat1 signaling was much more pronounced, indicating a contribution of Stat1 to pathways other than the IFN-I pathway. In stark contrast, Stat1 activity in both DC and T cells contributed positively to secondary immune responses against Lm in immunized animals, while macrophage Stat1 was dispensable. Our findings provide the first genetic evidence that Stat1 signaling in different cell types produces antagonistic effects on innate protection against Lm that are obscured in mice with complete Stat1 deficiency. They further demonstrate a drastic change in the cell type-dependent Stat1 requirement for memory responses to Lm infection.


Journal of Immunology | 2009

Dendritic Cells Require STAT-1 Phosphorylated at Its Transactivating Domain for the Induction of Peptide-Specific CTL

Andreas Pilz; Wolfgang Kratky; Silvia Stockinger; Olivia Simma; Ulrich Kalinke; Karen Lingnau; Alexander von Gabain; Dagmar Stoiber; Veronika Sexl; Thomas Kolbe; Thomas Rülicke; Mathias Müller; Thomas Decker

Phosphorylation of transcription factor STAT-1 on Y701 regulates subcellular localization whereas phosphorylation of the transactivating domain at S727 enhances transcriptional activity. In this study, we investigate the impact of STAT-1 and the importance of transactivating domain phosphorylation on the induction of peptide-specific CTL in presence of the TLR9-dependent immune adjuvant IC31. STAT-1 deficiency completely abolished CTL induction upon immunization, which was strongly reduced in animals carrying the mutation of the S727 phospho-acceptor site. A comparable reduction of CTL was found in mice lacking the type I IFN (IFN-I) receptor, whereas IFN-γ-deficient mice behaved like wild-type controls. This finding suggests that S727-phosphorylated STAT-1 supports IFN-I-dependent induction of CTL. In adoptive transfer experiments, IFN-I- and S727-phosphorylated STAT-1 were critical for the activation and function of dendritic cells. Mice with a T cell-specific IFN-I receptor ablation did not show impaired CTL responses. Unlike the situation observed for CTL development S727-phosphorylated STAT-1 restrained proliferation of naive CD8+ T cells both in vitro and following transfer into Rag-deficient mice. In summary, our data reveal a dual role of S727-phosphorylated STAT-1 for dendritic cell maturation as a prerequisite for the induction of CTL activity and for T cell autonomous control of activation-induced or homeostatic proliferation.


OncoImmunology | 2012

Conditional IFNAR1 ablation reveals distinct requirements of Type I IFN signaling for NK cell maturation and tumor surveillance

Tatsuaki Mizutani; Nina Neugebauer; Eva Maria Putz; Nadine Moritz; Olivia Simma; Eva Zebedin-Brandl; Dagmar Gotthardt; Wolfgang Warsch; Eva Eckelhart; Hans-Peter Kantner; Ulrich Kalinke; Stefan Lienenklaus; Siegfried Weiss; Birgit Strobl; Mathias Müller; Veronika Sexl; Dagmar Stoiber

Mice with an impaired Type I interferon (IFN) signaling (IFNAR1- and IFNβ-deficient mice) display an increased susceptibility toward v-ABL-induced B-cell leukemia/lymphoma. The enhanced leukemogenesis in the absence of an intact Type I IFN signaling is caused by alterations within the tumor environment. Deletion of Ifnar1 in tumor cells (as obtained in Ifnar1f/f CD19-Cre mice) failed to impact on disease latency or type. In line with this observation, the initial transformation and proliferative capacity of tumor cells were unaltered irrespective of whether the cells expressed IFNAR1 or not. v-ABL-induced leukemogenesis is mainly subjected to natural killer (NK) cell-mediated tumor surveillance. Thus, we concentrated on NK cell functions in IFNAR1 deficient animals. Ifnar1-/- NK cells displayed maturation defects as well as an impaired cytolytic activity. When we deleted Ifnar1 selectively in mature NK cells (by crossing Ncr1-iCre mice to Ifnar1f/f animals), maturation was not altered. However, NK cells derived from Ifnar1f/f Ncr1-iCre mice showed a significant cytolytic defect in vitro against the hematopoietic cell lines YAC-1 and RMA-S, but not against the melanoma cell line B16F10. Interestingly, this defect was not related to an in vivo phenotype as v-ABL-induced leukemogenesis was unaltered in Ifnar1f/f Ncr1-iCre compared with Ifnar1f/f control mice. Moreover, the ability of Ifnar1f/f Ncr1-iCre NK cells to kill B16F10 melanoma cells was unaltered, both in vitro and in vivo. Our data reveal that despite the necessity for Type I IFN in NK cell maturation the expression of IFNAR1 on mature murine NK cells is not required for efficient tumor surveillance.

Collaboration


Dive into the Dagmar Stoiber's collaboration.

Top Co-Authors

Avatar

Veronika Sexl

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Mathias Müller

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Thomas Decker

Max F. Perutz Laboratories

View shared research outputs
Top Co-Authors

Avatar

Emilio Casanova

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Olivia Simma

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Richard Moriggl

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Robert Eferl

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Thomas Kolbe

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Birgit Strobl

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Christian Schuster

Medical University of Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge