Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dagobert G. Heijerick is active.

Publication


Featured researches published by Dagobert G. Heijerick.


Aquatic Toxicology | 2003

The toxicity of metal mixtures to the estuarine mysid Neomysis integer (Crustacea: Mysidacea) under changing salinity

Tim Verslycke; Marnix Vangheluwe; Dagobert G. Heijerick; Karel A.C. De Schamphelaere; Patrick A. Van Sprang; Colin R. Janssen

Water quality criteria are mainly based on data obtained in toxicity tests with single toxicants. Several authors have demonstrated that this approach may be inadequate as the joint action of the chemicals is not taken into account. In this study, the combined effects of six metals on the European estuarine mysid Neomysis integer (Leach, 1814) were examined. Acute 96-h toxicity tests were performed with mercury, copper, cadmium, nickel, zinc and lead, and this as single compounds and as a mixture of all six. The concentrations of the individual metals of the equitoxic mixtures were calculated using the concentration-addition model. The 96-h LC50s for the single metals, at a salinity of 5 per thousand, ranged from 6.9 to 1140 microg/l, with the following toxicity ranking: Hg>Cd>Cu>Zn>Ni>Pb. Increasing the salinity from 5 to 25 per thousand resulted in lower toxicity and lower concentrations of the free ion (as derived from speciation calculations) for all metals. This salinity effect was strongest for cadmium and lead and could be attributed to complexation with chloride ions. The toxicity of nickel, copper and zinc was affected to a smaller extent by salinity. The 96-h LC50 for mercury was the same for both salinities. In order to evaluate the influence of changing salinity conditions on the acute toxicity of metal mixtures, tests were performed at different salinities (5, 10, 15 and 25 per thousand ). The 96-h LC50 value (1.49 T.U.) of the metal mixture, at a salinity of 5 per thousand, was clearly lower than the expected value (6 T.U.) based on the non-additive hypothesis, thus confirming the additive effect of these metals in the marine/estuarine environment. Changing salinity had a profound effect on the toxicity of the mixture. The toxicity clearly decreased with increasing salinity until 15 per thousand. Higher salinities (25 per thousand ) had no further influence on the 96-h LC50 of the mixture which is situated at a value between 4.4 and 4.6. Finally, the relative sensitivity to the selected metals was compared with the relative sensitivity of the commonly used mysid Americamysis (=Mysidopsis) bahia.


Environmental Toxicology and Chemistry | 2003

Development and field validation of a predictive copper toxicity model for the green alga Pseudokirchneriella subcapitata

Karel A.C. De Schamphelaere; Flavio M. Vasconcelos; Dagobert G. Heijerick; Filip Tack; Katrien Delbeke; Herbert E. Allen; Colin R. Janssen

In this study, the combined effects of pH, water hardness, and dissolved organic carbon (DOC) concentration and type on the chronic (72-h) effect of copper on growth inhibition of the green alga Pseudokirchneriella subcapitata were investigated. Natural dissolved organic matter (DOM) was collected at three sites in Belgium and The Netherlands using reverse osmosis. A full central composite test design was used for one DOM and a subset of the full design for the two other DOMs. For a total number of 35 toxicity tests performed, 72-h effect concentration resulting in 10% growth inhibition (EbC10s) ranged from 14.2 to 175.9 micrograms Cu/L (factor 12) and 72-h EbC50s from 26.9 to 506.8 micrograms Cu/L (factor 20). Statistical analysis demonstrated that DOC concentration, DOM type, and pH had a significant effect on copper toxicity; hardness did not affect toxicity at the levels tested. In general, an increase in pH resulted in increased toxicity, whereas an increase of the DOC concentration resulted in decreased copper toxicity. When expressed as dissolved copper, significant differences of toxicity reduction capacity were noted across the three DOM types tested (up to factor 2.5). When expressed as Cu2+ activity, effect levels were only significantly affected by pH; linear relationships were observed between pH and the logarithm of the effect concentrations expressed as free copper ion activity, that is, log(EbC50Cu2+) and log(EbC10Cu2+): (1) log(EbC50Cu2+)= - 1.431 pH + 2.050 (r2 = 0.95), and (2) log(EbC10cu2+) = -1.140 pH -0.812 (r2 = 0.91). A copper toxicity model was developed by linking these equations to the WHAM V geochemical speciation model. This model predicted 97% of the EbC50dissolved and EbC10dissolved values within a factor of two of the observed values. Further validation using toxicity test results that were obtained previously with copper-spiked European surface waters demonstrated that for 81% of tested waters, effect concentrations were predicted within a factor of two of the observed. The developed model is considered to be an important step forward in accounting for copper bioavailability in natural systems.


Environment International | 2003

Environmental risk assessment of metals: tools for incorporating bioavailability.

Colin R. Janssen; Dagobert G. Heijerick; K.A.C. De Schamphelaere; Herbert E. Allen

In this paper, some of the main processes and parameters which affect metal bioavailability and toxicity in the aquatic environment and its implications for metal risk assessment procedures will be discussed. It has become clear that, besides chemical processes (speciation, complexation), attention should also be given to physiological aspects for predicting metal toxicity. The development of biotic ligand models (BLMs), which combine speciation models with more biologically oriented models (e.g. GSIM), has offered an answer to this need. The various BLMs which have been developed and/or refined for a number of metals (e.g. Cu, Ag, Zn) and species (algae, crustaceans, fish) are discussed here. Finally, the potential of the BLM approach is illustrated through a theoretical exercise in which chronic zinc toxicity to Daphnia magna is predicted in three regions, taking the physico-chemical characteristics of these areas into account.


Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2002

Biotic ligand model development predicting Zn toxicity to the alga Pseudokirchneriella subcapitata: possibilities and limitations.

Dagobert G. Heijerick; K.A.C. De Schamphelaere; Colin R. Janssen

Biotic ligand models have been developed for various metals (e.g. Cu, Ag, Zn) and different aquatic species. These models incorporate the effect of physico-chemical water characteristics (major cations, pH, dissolved organic carbon) on the bioavailability and toxicity of the metal. In this study, the individual effects of calcium, magnesium, potassium, sodium and pH on zinc toxicity to the green alga Pseudokirchneriella subcapitata (formerly and better known as Selenastrum capricornutum and Raphidocelis subcapitata) were investigated. Stability constants for binding to algal cells (K(BL)) were derived for those cations affecting zinc toxicity, using the mathematical approach proposed by De Schamphelaere and Janssen [Environ. Sci. Technol. 63, (2002) 48-54]. Potassium proved to be the only cation tested that did not alter zinc toxicity to algae significantly. Log (K(BL)) values for Ca, Mg and Na, derived at pH 7.5, were 3.2, 3.9 and 2.8, respectively. Toxicity tests performed at different pH values (5.5-8.0) indicated that competition between H(+) and Zn(2+) reduces zinc toxicity. However, the observed relationship between (H(+)) and the 72h-EbC(50) [expressed as microM (Zn(2+))] is not linear and suggests that pH affects the physiology of the biotic ligand. Although, in general, our findings seem to suggest that zinc toxicity to algae can be modelled as a function of key water characteristics, the results also demonstrate that the part of the conventional BLM-hypothesis-i.e. that the binding characteristics of the biotic ligand are independent of the test medium characteristics-is not valid for algae. The observed pH-dependent change of stability constants should therefore be further investigated and incorporated in future BL-modelling efforts with algae.


Human and Ecological Risk Assessment | 2000

Uncertainties in the Environmental Risk Assessment of Metals

Colin R. Janssen; K.A.C. De Schamphelaere; Dagobert G. Heijerick; Brita T.A. Muyssen; Koen Lock; Beatrijs Bossuyt; Marnix Vangheluwe; P Van Sprang

As life has evolved in the presence of metals, the assessment of the potential adverse effects of metals on ecosystems requires a different approach than those presently used for man-made organic substances. This article provides a brief review of applications and limitations of current techniques and presents, based on recent research results, suggestions for improving the scientific relevance and accuracy of environmental risk assessments of metals. The importance of the following factors responsible for major uncertainties in current environmental risk assessments of metals are discussed: factors affecting metal bioavailability and toxicity, the potential importance of deficiency effects (for essential metals), and field extrapolation of laboratory toxicity data. Possible (regulatory) consequences of inaccurately assessing the natural background concentrations of metals and acclimatization/adaptation potential of laboratory organisms and resident communities are illustrated using examples of recent research, hypothesis development, and a probabilistic environmental risk assessment.


Chemosphere | 2002

Bioavailability of zinc in runoff water from roofing materials

Dagobert G. Heijerick; Colin R. Janssen; Camilla Karlèn; Inger Odnevall Wallinder; Christofer Leygraf

Corrosion and runoff from zinc-coated materials and outdoor structures is an important source for the dispersion of zinc in the environment. Being part of a large inter-disciplinary research project, this study presents the bioavailability of zinc in runoff water immediately after release from the surface of 15 different commercially available zinc-based materials exposed to the urban environment of Stockholm, Sweden. Runoff water was analysed chemically and evaluated for its possible environmental impact, using both a biosensor test with the bacteria Alcaligenes eutrophus (Biomet) and the conventional 72 h growth inhibition test with the green alga Raphidocelis subcapitata. Chemical speciation modelling revealed that most zinc (94.3-99.9%) was present as the free Zn ion, the most bioavailable speciation form. These findings were confirmed by the results of the biosensor test (Biomet) which indicated that all zinc was indeed bioavailable. Analysis of the ecotoxicity data also suggested that the observed toxic effects were due to the presence of Zn2+ ions. Finally, regression analysis showed that, for this type of runoff samples, the rapid screening biosensor was capable of predicting (a) the total amount of zinc present in the runoff samples (R2 of 0.93-0.98; p < 0.05) and (b) the observed 72 h-EbC50s (R2 of 0.69-0.97; p < 0.05).


Science of The Total Environment | 2001

Runoff rates and ecotoxicity of zinc induced by atmospheric corrosion.

C. Karlen; I. Odnevall Wallinder; Dagobert G. Heijerick; Christofer Leygraf; Colin R. Janssen

Initiated by regulatory restrictions on the use of zinc for various building and construction applications, together with a lack of knowledge related to the release of zinc induced by atmospheric corrosion, a major interdisciplinary research project was implemented to generate data to be used in future risk assessment. Runoff rates from a large number of commercially available zinc-based materials have been determined on panels inclined 45 degrees from the horizon, facing south, during a 1-year atmospheric exposure in an urban environment in Sweden. Possible environmental effects of runoff water immediately after leaving the surface of the various materials have been evaluated during two different sampling periods of varying season and zinc concentration, using the standard growth inhibition test with algae. Raphidocelis subcapitata (formerly Selenastrum capricornutum). Zinc-specific biosensors with the bacterial strain of Alcaligenes eutrophus, and computer modeling using the water-ligand model MINTEQA2 and the humic aquatic model WHAM, have been used to assess the bioavailability and chemical speciation of zinc in the runoff water. An excellent consistency between the different methods was observed. The results show considerably lower runoff rates of zinc (0.07-3.5 g m(-2) year(-1)) than previously being used for regulatory restrictions, and the concentration of zinc to be predominantly responsible for the observed toxicity of the runoff water towards the green algae. The majority of the released zinc quantity was found to be present as free hydrated zinc ions and, hence, bioavailable. The data do not consider changes in bioavailability and chemical speciation or dilution effects during entry into the environment, and should therefore only be used as an initial assessment of the potential environmental effect of zinc runoff from building applications. This interdisciplinary approach has the potential for studies on the environmental fate of zinc in soil or aquatic systems.


Corrosion Science | 2001

Atmospheric corrosion of zinc-based materials: runoff rates, chemical speciation and ecotoxicity effects

I. Odnevall Wallinder; C. Leygraf; C. Karlen; Dagobert G. Heijerick; Colin R. Janssen

In order to fill some major gaps of knowledge for future risk assessments, an interdisciplinary research effort is going on in order to generate relevant zinc runoff rate data from various commercial zinc-based materials, and to explore the relation between the chemical speciation of zinc in runoff water and its ecotoxicity. This study presents runoff rates, based on 1-year exposures of 15 zinc-based materials, which range from 0.07 to 3.5 g/m2 year. When collected immediately after release from the various zinc-based surfaces, chemical speciation modeling of the runoff water suggests that nearly all zinc (>95%) is present as hydrated Zn2+ ions, the most bioavailable speciation form. Evaluation of zinc runoff for possible environmental effects was performed through growth inhibition test with a green alga, Raphidocelis subcapitata. The results show a high correlation between the amount of zinc in the runoff and the environmental effect, suggesting, again, that all zinc is present as hydrated Zn2+. The insight gained aids in predicting actual ecotoxicity effects during environmental fate of zinc, based on chemical speciation of zinc in the runoff.


Environmental Pollution | 2002

Runoff rates, chemical speciation and bioavailability of copper released from naturally patinated copper

C. Karlen; Inger Odnevall Wallinder; Dagobert G. Heijerick; Christofer Leygraf

The release of copper, induced by atmospheric corrosion, from naturally patinated copper of varying age (0 and 30 years) has been investigated together with its potential ecotoxic effect. Results were generated in an interdisciplinary research effort in which corrosion science and ecotoxicology aspects were combined. The aim of the investigation was to elucidate the situation when copper-containing rainwater leaves a roof in terms of runoff rate, chemical speciation, bioavailability and ecotoxicity effects. Data have been collected during a three-year field exposure conducted in the urban environment of Stockholm, Sweden. The potential environmental effects have been evaluated using a combination of a copper specific biosensor test with the bacterium Alcaligenes eutrophus and the conventional 72-h growth inhibition test with the green alga Raphidocelis subcapitata. The results show annual runoff rates between 1.0 and 1.5 g/m2 year for naturally patinated copper of varying age. The runoff rate increased slightly with patina age, which mainly is attributed to the enhanced first flush effect observed on thicker patina layers. The total copper concentration in investigated runoff samplings ranged from 0.9 to 9.7 mg/l. Both computer modeling and experimental studies revealed that the majority (60-100%) of released copper was present as the free hydrated cupric ion, Cu(H2O)6(2+), the most bioavailable copper species. However, other copper species in the runoff water, such as, e.g. Cu(OH)+ and Cu2(OH)2(2+), were also bioavailable. The copper-containing runoff water, sampled directly after release from the roof, caused significant reduction in growth rate of the green alga. It should be emphasized that the results describe the runoff situation immediately after release from the copper roof and not the real environmental ecotoxicity. Therefore the data should only be used as an initial assessment of the potential environmental effect of copper runoff from building applications. Future risk assessments should also consider dilution effects of copper, changes in its chemical speciation and bioavailability during environmental entry, and type and sensitivity of the receiving ecosystem.


Reviews of Environmental Contamination and Toxicology | 2003

Algal toxicity tests for environmental risk assessments of metals

Colin R. Janssen; Dagobert G. Heijerick

Current regulatory methods for assessing the effects of contaminants, and metals in particular, rely mainly on a limited number of standardized test methods and test species (OECD, ISO, ASTM, USEPA). However, these test protocols allow a certain degree of freedom in relation to physicochemical parameters or biological aspects, which may lead to large variability in test results. The current review, based on effects data and theoretical considerations reported in the literature, tried to determine and quantify the effect of variation of these factors on the outcome of metal toxicity tests with algae. Major physicochemical parameters that affect metal toxicity to algae are hardness, pH, preculture conditions, type of test medium, and presence of chelating agents: Literature data also clearly demonstrate the importance of test species or strain selection (inter- and intraspecies sensitivity variability) on the outcome of algal toxicity tests. For Zn, a factor of 8.3 is observed between the NOEC for Selenastrum capricornutum (currently renamed Pseudokirchneriella subcapitata) and Croococcus paris. An intraspecies difference for S. capricornutum of a factor of 60 is observed between various reported EC50S for Cd. Next to differences in physicochemical test conditions, possible adaptation or acclimation to deficient/elevated metal concentrations add to the reported differences: S. capricornutum became three times less sensitive to Zn when acclimated to 65 microg Zn/L compared to cultures in ISO medium. This review has revealed that currently accepted standard protocols used in regulatory frameworks contain a number of major shortcomings on the physicochemical and biological aspects of algal toxicity testing with metals. These shortcomings are summarized in Table 5, together with a number of suggestions that could help to modify and improve standard test protocols for evaluating metal toxicity to algae. Until now, important factors such as pH control during test performance, selection of test medium, test species, and the effects of possible adaptation/acclimation to natural metal concentrations have not been considered, which could have serious implications when the resulting unsuitable or irrelevant toxicity data are subsequently used for setting environmental management policies. These findings also have their consequences when extrapolating laboratory data to the field as the complexity of natural waters currently is not reflected in laboratory standard media. These media contain no dissolved organic matter, have a relatively high pH, and contain large amounts of essential nutrients. In addition, the limited number of laboratory test species do not reflect natural phytoplankton communities. Test procedures for assessing the environmental impact of metal contamination in a specified ecoregion should therefore be based on performing a battery of algal tests with species adapted to and tested under the specific natural conditions of the region.

Collaboration


Dive into the Dagobert G. Heijerick's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christofer Leygraf

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Karlen

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

I. Odnevall Wallinder

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge