Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dahui Li is active.

Publication


Featured researches published by Dahui Li.


Frontiers in Plant Science | 2016

MYB Transcription Factors in Chinese Pear (Pyrus bretschneideri Rehd.): Genome-Wide Identification, Classification, and Expression Profiling during Fruit Development

Yunpeng Cao; Yahui Han; Dahui Li; Yi Lin; Yongping Cai

The MYB family is one of the largest families of transcription factors in plants. Although, some MYBs were reported to play roles in secondary metabolism, no comprehensive study of the MYB family in Chinese pear (Pyrus bretschneideri Rehd.) has been reported. In the present study, we performed genome-wide analysis of MYB genes in Chinese pear, designated as PbMYBs, including analyses of their phylogenic relationships, structures, chromosomal locations, promoter regions, GO annotations, and collinearity. A total of 129 PbMYB genes were identified in the pear genome and were divided into 31 subgroups based on phylogenetic analysis. These PbMYBs were unevenly distributed among 16 chromosomes (total of 17 chromosomes). The occurrence of gene duplication events indicated that whole-genome duplication and segmental duplication likely played key roles in expansion of the PbMYB gene family. Ka/Ks analysis suggested that the duplicated PbMYBs mainly experienced purifying selection with restrictive functional divergence after the duplication events. Interspecies microsynteny analysis revealed maximum orthology between pear and peach, followed by plum and strawberry. Subsequently, the expression patterns of 20 PbMYB genes that may be involved in lignin biosynthesis according to their phylogenetic relationships were examined throughout fruit development. Among the 20 genes examined, PbMYB25 and PbMYB52 exhibited expression patterns consistent with the typical variations in the lignin content previously reported. Moreover, sub-cellular localization analysis revealed that two proteins PbMYB25 and PbMYB52 were localized to the nucleus. All together, PbMYB25 and PbMYB52 were inferred to be candidate genes involved in the regulation of lignin biosynthesis during the development of pear fruit. This study provides useful information for further functional analysis of the MYB gene family in pear.


Frontiers in Genetics | 2017

Genome-Wide Analysis Suggests the Relaxed Purifying Selection Affect the Evolution of WOX Genes in Pyrus bretschneideri, Prunus persica, Prunus mume, and Fragaria vesca

Yunpeng Cao; Yahui Han; Dandan Meng; Guohui Li; Dahui Li; Muhammad Abdullah; Qing Jin; Yi Lin; Yongping Cai

WUSCHEL-related homeobox (WOX) family is one of the largest group of transcription factors (TFs) specifically found in plant kingdom. WOX TFs play an important role in plant development processes and evolutionary novelties. Although the roles of WOXs in Arabidopsis and rice have been well-studied, however, little are known about the relationships among the main clades in the molecular evolution of these genes in Rosaceae. Here, we carried out a genome-wide analysis and identified 14, 10, 10, and 9 of WOX genes from four Rosaceae species (Fragaria vesca, Prunus persica, Prunus mume, and Pyrus bretschneideri, respectively). According to evolutionary analysis, as well as amino acid sequences of their homodomains, these genes were divided into three clades with nine subgroups. Furthermore, due to the conserved structural patterns among these WOX genes, it was proposed that there should exist some highly conserved regions of microsynteny in the four Rosaceae species. Moreover, most of WOX gene pairs were presented with the conserved orientation among syntenic genome regions. In addition, according to substitution models analysis using PMAL software, no significant positive selection was detected, but type I functional divergence was identified among certain amino acids in WOX protein. These results revealed that the relaxed purifying selection might be the main driving force during the evolution of WOX genes in the tested Rosaceae species. Our result will be useful for further precise research on evolution of the WOX genes in family Rosaceae.


Frontiers in Plant Science | 2016

Structural, Evolutionary, and Functional Analysis of the Class III Peroxidase Gene Family in Chinese Pear (Pyrus bretschneideri)

Yunpeng Cao; Yahui Han; Dandan Meng; Dahui Li; Qing Jin; Yi Lin; Yongping Cai

Peroxidases (PRXs) are widely existed in various organisms and could be divided into different types according to their structures and functions. Specifically, the Class III Peroxidase, a plant-specific multi-gene family, involves in many physiological processes, such as the metabolism of auxin, the extension and thickening of cell wall, as well as the formation of lignin. By searching the pear genome database, 94 non-redundant PRXs from Pyrus bretschneideri (PbPRXs) were identified. Subsequently, analysis of phylogenetic relationships, gene structures, conserved motifs, and microsynteny was performed. These PbPRXs were unevenly distributed among 17 chromosomes of pear. In addition, 26 segmental duplication events but only one tandem duplication were occurred in these PbPRXs, implying segmental duplication was the main contributor to the expansion of the PbPRX family. By the Ka/Ks analysis, 26 out of 27 duplicated PbPRXs has experienced purifying selection. Twenty motifs were identified in PbPRXs based on the MEME analysis, 11 of which were enriched in pear. A total of 41 expressed genes were identified from ESTs of pear fruit. According to qRT-PCR, the expression trends of five PbPRXs in subgroup C were consistent with the change of lignin content during pear fruit development. So we inferred that the five PbPRXs were candidate genes involved in the lignin synthesis pathway. These results provided useful information for further researches of PRX genes in pear.


Genes | 2016

Systematic Analysis of the 4-Coumarate:Coenzyme A Ligase (4CL) Related Genes and Expression Profiling during Fruit Development in the Chinese Pear

Yunpeng Cao; Yahui Han; Dahui Li; Yi Lin; Yongping Cai

In plants, 4-coumarate:coenzyme A ligases (4CLs), comprising some of the adenylate-forming enzymes, are key enzymes involved in regulating lignin metabolism and the biosynthesis of flavonoids and other secondary metabolites. Although several 4CL-related proteins were shown to play roles in secondary metabolism, no comprehensive study on 4CL-related genes in the pear and other Rosaceae species has been reported. In this study, we identified 4CL-related genes in the apple, peach, yangmei, and pear genomes using DNATOOLS software and inferred their evolutionary relationships using phylogenetic analysis, collinearity analysis, conserved motif analysis, and structure analysis. A total of 149 4CL-related genes in four Rosaceous species (pear, apple, peach, and yangmei) were identified, with 30 members in the pear. We explored the functions of several 4CL and acyl-coenzyme A synthetase (ACS) genes during the development of pear fruit by quantitative real-time PCR (qRT-PCR). We found that duplication events had occurred in the 30 4CL-related genes in the pear. These duplicated 4CL-related genes are distributed unevenly across all pear chromosomes except chromosomes 4, 8, 11, and 12. The results of this study provide a basis for further investigation of both the functions and evolutionary history of 4CL-related genes.


Biology Open | 2017

Characterization and analysis of CCR and CAD gene families at the whole-genome level for lignin synthesis of stone cells in pear (Pyrus bretschneideri) fruit

Xi Cheng; Manli Li; Dahui Li; Jinyun Zhang; Qing Jin; Lingling Sheng; Yongping Cai; Yi Lin

ABSTRACT The content of stone cells has significant effects on the flavour and quality of pear fruit. Previous research suggested that lignin deposition is closely related to stone cell formation. In the lignin biosynthetic pathway, cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD), dehydrogenase/reductase family members, catalyse the last two steps in monolignol synthesis. However, there is little knowledge of the characteristics of the CCR and CAD families in pear and their involvement in lignin synthesis of stone cells. In this study, 31 CCRs and 26 CADs were identified in the pear genome. Phylogenetic trees for CCRs and CADs were constructed; key amino acid residues were analysed, and three-dimensional structures were predicted. Using quantitative real-time polymerase chain reaction (qRT-PCR), PbCAD2, PbCCR1, -2 and -3 were identified as participating in lignin synthesis of stone cells in pear fruit. Subcellular localization analysis showed that the expressed proteins (PbCAD2, PbCCR1, -2 and -3) are found in the cytoplasm or at the cell membrane. These results reveal the evolutionary features of the CCR and CAD families in pear as well as the genes responsible for regulation of lignin synthesis and stone cell development in pear fruit. Summary: The characteristics of CCR and CAD families were systematically analyzed, and candidate members related to lignin synthesis and stone cell development were screened out in this study.


BMC Plant Biology | 2017

B-BOX genes: genome-wide identification, evolution and their contribution to pollen growth in pear (Pyrus bretschneideri Rehd.)

Yunpeng Cao; Yahui Han; Dandan Meng; Dahui Li; Chunyan Jiao; Qing Jin; Yi Lin; Yongping Cai

BackgroundThe B-BOX (BBX) proteins have important functions in regulating plant growth and development. In plants, the BBX gene family has been identified in several plants, such as rice, Arabidopsis and tomato. However, there still lack a genome-wide survey of BBX genes in pear.ResultsIn the present study, a total of 25 BBX genes were identified in pear (Pyrus bretschneideri Rehd.). Subsequently, phylogenetic relationship, gene structure, gene duplication, transcriptome data and qRT-PCR were conducted on these BBX gene members. The transcript analysis revealed that twelve PbBBX genes (48%) were specifically expressed in pear pollen tubes. Furthermore, qRT-PCR analysis indicated that both PbBBX4 and PbBBX13 have potential role in pear fruit development, while PbBBX5 should be involved in the senescence of pear pollen tube.ConclusionsThis study provided a genome-wide survey of BBX gene family in pear, and highlighted its roles in both pear fruits and pollen tubes. The results will be useful in improving our understanding of the complexity of BBX gene family and functional characteristics of its members in future study.


Functional & Integrative Genomics | 2018

Systematic analysis and comparison of the PHD-Finger gene family in Chinese pear (Pyrus bretschneideri) and its role in fruit development

Yunpeng Cao; Yahui Han; Dandan Meng; Muhammad Abdullah; Dahui Li; Qing Jin; Yi Lin; Yongping Cai

PHD-finger proteins, which belongs to the type of zinc finger family, and that play an important role in the regulation of both transcription and the chromatin state in eukaryotes. Currently, PHD-finger proteins have been well studied in animals, while few studies have been carried out on their function in plants. In the present study, 129 non-redundant PHD-finger genes were identified from 5 Rosaceae species (pear, apple, strawberry, mei, and peach); among them, 31 genes were identified in pear. Subsequently, we carried out a bioinformatics analysis of the PHD-finger genes. Thirty-one PbPHD genes were divided into 7 subfamilies based on the phylogenetic analysis, which are consistent with the intron-exon and conserved motif analyses. In addition, we identified five segmental duplication events, implying that the segmental duplications might be a crucial role in the expansion of the PHD-finger gene family in pear. The microsynteny analysis of five Rosaceae species showed that there were independent duplication events in addition to the genome-wide duplication of the pear genome. Subsequently, ten expressed PHD-finger genes of pear fruit were identified using qRT-PCR, and one of these genes, PbPHD10, was identified as an important candidate gene for the regulation of lignin synthesis. Our research provides useful information for the further analysis of the function of PHD-finger gene family in pear.


PeerJ | 2017

Genome-wide analysis suggests high level of microsynteny and purifying selection affect the evolution of EIN3/EIL family in Rosaceae

Yunpeng Cao; Yahui Han; Dandan Meng; Dahui Li; Qing Jin; Yi Lin; Yongping Cai

The ethylene-insensitive3/ethylene-insensitive3-like (EIN3/EIL) proteins are a type of nuclear-localized protein with DNA-binding activity in plants. Although the EIN3/EIL gene family has been studied in several plant species, little is known about comprehensive study of the EIN3/EIL gene family in Rosaceae. In this study, ten, five, four, and five EIN3/EIL genes were identified in the genomes of pear (Pyrus bretschneideri), mei (Prunus mume), peach (Prunus persica) and strawberry (Fragaria vesca), respectively. Twenty-eight chromosomal segments of EIL/EIN3 gene family were found in four Rosaceae species, and these segments could form seven orthologous or paralogous groups based on interspecies or intraspecies gene colinearity (microsynteny) analysis. Moreover, the highly conserved regions of microsynteny were found in four Rosaceae species. Subsequently it was found that both whole genome duplication and tandem duplication events significantly contributed to the EIL/EIN3 gene family expansion. Gene expression analysis of the EIL/EIN3 genes in the pear revealed subfunctionalization for several PbEIL genes derived from whole genome duplication. It is noteworthy that according to environmental selection pressure analysis, the strong purifying selection should dominate the maintenance of the EIL/EIN3 gene family in four Rosaceae species. These results provided useful information on Rosaceae EIL/EIN3 genes, as well as insights into the evolution of this gene family in four Rosaceae species. Furthermore, high level of microsynteny in the four Rosaceae plants suggested that a large-scale genome duplication event in the EIL/EIN3 gene family was predated to speciation.


PeerJ | 2017

Comparative genomic analysis of the PKS genes in five species and expression analysis in upland cotton

Xueqiang Su; Xu Sun; Xi Cheng; Yanan Wang; Muhammad Abdullah; Manli Li; Dahui Li; Junshan Gao; Yongping Cai; Yi Lin

Plant type III polyketide synthase (PKS) can catalyse the formation of a series of secondary metabolites with different structures and different biological functions; the enzyme plays an important role in plant growth, development and resistance to stress. At present, the PKS gene has been identified and studied in a variety of plants. Here, we identified 11 PKS genes from upland cotton (Gossypium hirsutum) and compared them with 41 PKS genes in Populus tremula, Vitis vinifera, Malus domestica and Arabidopsis thaliana. According to the phylogenetic tree, a total of 52 PKS genes can be divided into four subfamilies (I–IV). The analysis of gene structures and conserved motifs revealed that most of the PKS genes were composed of two exons and one intron and there are two characteristic conserved domains (Chal_sti_synt_N and Chal_sti_synt_C) of the PKS gene family. In our study of the five species, gene duplication was found in addition to Arabidopsis thaliana and we determined that purifying selection has been of great significance in maintaining the function of PKS gene family. From qRT-PCR analysis and a combination of the role of the accumulation of proanthocyanidins (PAs) in brown cotton fibers, we concluded that five PKS genes are candidate genes involved in brown cotton fiber pigment synthesis. These results are important for the further study of brown cotton PKS genes. It not only reveals the relationship between PKS gene family and pigment in brown cotton, but also creates conditions for improving the quality of brown cotton fiber.


Molecules | 2018

Genomic Comparison of the P-ATPase Gene Family in Four Cotton Species and Their Expression Patterns in Gossypium hirsutum

Wen Chen; Guo-Yang Si; Gang Zhao; Muhammad Abdullah; Ning Guo; Dahui Li; Xu Sun; Yongping Cai; Yi Lin; Junshan Gao

Plant P-type H+-ATPase (P-ATPase) is a membrane protein existing in the plasma membrane that plays an important role in the transmembrane transport of plant cells. To understand the variety and quantity of P-ATPase proteins in different cotton species, we combined four databases from two diploid cotton species (Gossypium raimondii and G. arboreum) and two tetraploid cotton species (G. hirsutum and G. barbadense) to screen the P-ATPase gene family and resolved the evolutionary relationships between the former cotton species. We identified 53, 51, 99 and 98 P-ATPase genes from G. arboretum, G. raimondii, G. barbadense and G. hirsutum, respectively. The structural and phylogenetic analyses revealed that the gene structure was consistent between P-ATPase genes, with a close evolutionary relationship. The expression analysis of P-ATPase genes showed that many P-ATPase genes were highly expressed in various tissues and at different fiber developmental stages in G. hirsutum, suggesting that they have potential functions during growth and fiber development in cotton.

Collaboration


Dive into the Dahui Li's collaboration.

Top Co-Authors

Avatar

Yi Lin

Anhui Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yongping Cai

Anhui Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qing Jin

Anhui Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yahui Han

Anhui Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yunpeng Cao

Anhui Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Dandan Meng

Anhui Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Muhammad Abdullah

Anhui Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Junshan Gao

Anhui Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Manli Li

Anhui Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xu Sun

Anhui Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge