Dai Zhi-Min
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dai Zhi-Min.
Chinese Physics C | 2008
Zhao Yu-Bin; Yin Cheng-Ke; Zhang Tong-Xuan; Fu Ze-Chuan; Zhao Zhen-Tang; Dai Zhi-Min; Liu Jianfei; Wang Fang
This paper describes a field programming gate array (FPGA) based low level radio frequency (LLRF) prototype for the SSRF storage ring RF system. This prototype includes the local oscillator (LO), analog front end, digital front end, RF out, clock distributing, digital signal processing and communication functions. All feedback algorithms are performed in FPGA. The long term of the test prototype with high power shows that the variations of the RF amplitude and the phase in the accelerating cavity are less than 1% and 1 degrees respectively, and the variation of the cavity resonance frequency is controlled within +/- 10 Hz.
Chinese Physics Letters | 2010
Lin Xu-Ling; Zhang Jian-Bing; Lu Yu; Luo Feng; Lu Shan-Liang; Yu Tie-Min; Dai Zhi-Min
A 30-MeV femto-second electron linac is built at the Shanghai Institute of Applied Physics, which can produce high power, coherent THz undulator radiation. We report the experimental facility and measurement of the power, frequency spectrum. First experiments show the averaged power at THz to be about 20 mW.
Chinese Physics C | 2008
Yin Cheng-Ke; Dai Zhi-Min; Liu Jianfei; Zhao Yu-Bin; Zhang Tong-Xuan; Fu Ze-Chuan; Liu Wei-Qing
This paper describes a non-IQ controller for digital Low Level RF (LLRF) feedback control. Based on this non-IQ sampling method, arbitrary frequency relationship between ADC/DAC sampling clocks and IF signals can be employed. The nonlinearity in digital conversion can be reduced and the system dynamic performance improved. This paper analyzes the nonlinearity in conventional IQ sampling, gives the state variable description of the non-IQ algorithm, presents an implementation and its synchronization, and compares its performances with IQ sampling.
Chinese Physics C | 2011
Deng Hai-Xiao; Lin Tang-Yu; Yan Jun; Wang Dong; Dai Zhi-Min
Laser-beam interaction in an undulator is commonly suggested in the development of free electron laser (FEL) schemes. In this paper, a three-dimensional algorithm is developed to assist in laser-beam interaction simulation in an undulator, which is built on the basis of the fundamentals of electrodynamics, i.e. the electrons behavior is determined by the magnetic field and the laser electric field in the time domain. On the basis of the algorithm, the detuning effect in a laser heater, the carrier envelope phase effect of a few-cycle laser in attosecond X-ray FEL schemes and output wavelength tuning in a high gain harmonic generation FEL are numerically discussed.
Chinese Physics Letters | 2009
Lin Xu-Ling; Zhang Jian-Bing; Lu Yu; Luo Feng; Lu Shan-Liang; Yu Tie-Min; Dai Zhi-Min
The generation and observation of coherent THz synchrotron radiation from femtosecond electron bunches in the Shanghai Institute of Applied Physics femtosecond accelerator device is reported. We describe the experiment setup and present the first result of THz radiation properties such as power and spectrum.
Chinese Physics C | 2008
Deng Hai-Xiao; Dai Zhi-Min
In a planar undulator employed free electron laser (FEL), each harmonic radiation starts from linear amplification and ends with nonlinear harmonic interactions of the lower nonlinear harmonics and the fundamental radiation. In this paper, we investigate the harmonic generation based on the dispersion relation driven from the coupled Maxwell-Vlasov equations, taking into account the effects due to energy spread, emittance, betatron oscillation of electron beam as well as diffraction guiding of the radiation field. A 3D universal scaling function for gain of the linear harmonic generation and a 1D universal scaling function for gain of the nonlinear harmonic generation are presented, which promise rapid computation in FEL design and optimization. The analytical approaches have been validated by 3D simulation results in large range.
Chinese Physics C | 2010
Luo Feng; Bei Hua; Dai Zhi-Min
We present a design study of a free electron laser (FEL) oscillator for high power THz source experiments on the basis of the Shanghai femtosecond accelerator device. A circular groove guide is used as a new interaction structure. Plane metal meshes are used as upstream and downstream mirrors of the resonator. The general design parameters are presented. We analyzed the spontaneous emission and stimulated emission in the oscillator using these parameters.
Chinese Physics C | 2009
Lin Xu-Ling; Zhang Jian-Bing; Luo Feng; Bei Hua; Lu Shan-Liang; Yu Tie-Min; Dai Zhi-Min
Based on the femtosecond accelerator device which was built at the Shanghai Institute of Applied Physics (SINAP), recently a modified far infrared Michelson interferometer has been developed to measure the length of electron bunches via the optical autocorrelation method. Compared with our former normal Michelson interferometer, we use a hollow retroreflector instead of a flat mirror as the reflective mirror. The experimental setup and results of the bunch length measurement will be described in this paper.
Chinese Physics C | 2008
Deng Hai-Xiao; Dai Zhi-Min
In high gain harmonic generation (HGHG) free electron laser (FEL), with the right choice of parameters of the modulator undulator, the dispersive section and the seed laser, one may make the spatial bunching of the electron beam density distribution correspond to one of the harmonic frequencies of the radiator radiation, instead of the fundamental frequency of the radiator radiation in conventional HGHG, thus the radiator undulator is in harmonic operation (HO) mode. In this paper, we investigate HO of HGHG FEL. Theoretical analyses with universal method are derived and numerical simulations in ultraviolet and deep ultraviolet spectral regions are given. It shows that the power of the 3rd harmonic radiation in the HO of HGHG may be as high as 18.5% of the fundamental power level. Thus HO of HGHG FEL may obtain short wavelength by using lower beam energy.
Chinese Physics C | 2008
Deng Hai-Xiao; Dai Zhi-Min
Cascading stages of high gain harmonic generation free electron laser (FEL) seem to be a feasible way to generate short wavelength radiation. With help of the analytical estimates, we design a two-stage cascading scheme to achieve 131 nm DUV radiation on the basis of the Shanghai deep ultraviolet free electron laser test facility. Detailed studies on the FEL performance, the stability and the sensitivity of the output power to parameter variation have been achieved by GENESIS1.3, and design of the lattice structure is presented.