Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daibo Chen is active.

Publication


Featured researches published by Daibo Chen.


BMC Genomics | 2013

Transcriptome analysis of rice root heterosis by RNA-Seq

Rongrong Zhai; Yue Feng; Huimin Wang; Xiaodeng Zhan; Xihong Shen; Weiming Wu; Yingxin Zhang; Daibo Chen; Gaoxing Dai; Zhanlie Yang; Liyong Cao; Shihua Cheng

BackgroundHeterosis is a phenomenon in which hybrids exhibit superior performance relative to parental phenotypes. In addition to the heterosis of above-ground agronomic traits on which most existing studies have focused, root heterosis is also an indispensable component of heterosis in the entire plant and of major importance to plant breeding. Consequently, systematic investigations of root heterosis, particularly in reproductive-stage rice, are needed. The recent advent of RNA sequencing technology (RNA-Seq) provides an opportunity to conduct in-depth transcript profiling for heterosis studies.ResultsUsing the Illumina HiSeq 2000 platform, the root transcriptomes of the super-hybrid rice variety Xieyou 9308 and its parents were analyzed at tillering and heading stages. Approximately 391 million high-quality paired-end reads (100-bp in size) were generated and aligned against the Nipponbare reference genome. We found that 38,872 of 42,081 (92.4%) annotated transcripts were represented by at least one sequence read. A total of 829 and 4186 transcripts that were differentially expressed between the hybrid and its parents (DGHP) were identified at tillering and heading stages, respectively. Out of the DGHP, 66.59% were down-regulated at the tillering stage and 64.41% were up-regulated at the heading stage. At the heading stage, the DGHP were significantly enriched in pathways related to processes such as carbohydrate metabolism and plant hormone signal transduction, with most of the key genes that are involved in the two pathways being up-regulated in the hybrid. Several significant DGHP that could be mapped to quantitative trait loci (QTLs) for yield and root traits are also involved in carbohydrate metabolism and plant hormone signal transduction pathways.ConclusionsAn extensive transcriptome dataset was obtained by RNA-Seq, giving a comprehensive overview of the root transcriptomes at tillering and heading stages in a heterotic rice cross and providing a useful resource for the rice research community. Using comparative transcriptome analysis, we detected DGHP and identified a group of potential candidate transcripts. The changes in the expression of the candidate transcripts may lay a foundation for future studies on molecular mechanisms underlying root heterosis.


PLOS ONE | 2013

Identification of Transcriptome SNPs for Assessing Allele-Specific Gene Expression in a Super-Hybrid Rice Xieyou9308

Rongrong Zhai; Yue Feng; Xiaodeng Zhan; Xihong Shen; Weiming Wu; Ping Yu; Yingxin Zhang; Daibo Chen; Huimin Wang; Ze-Chuan Lin; Liyong Cao; Shihua Cheng

Hybridization, a common process in nature, can give rise to a vast reservoir of allelic variants. Combination of these allelic variants may result in novel patterns of gene action and is thought to contribute to heterosis. In this study, we analyzed genome-wide allele-specific gene expression (ASGE) in the super-hybrid rice variety Xieyou9308 using RNA sequencing technology (RNA-Seq). We identified 9325 reliable single nucleotide polymorphisms (SNPs) distributed throughout the genome. Nearly 68% of the identified polymorphisms were CT and GA SNPs between R9308 and Xieqingzao B, suggesting the existence of DNA methylation, a heritable epigenetic mark, in the parents and their F1 hybrid. Of 2793 identified transcripts with consistent allelic biases, only 480 (17%) showed significant allelic biases during tillering and/or heading stages, implying that trans effects may mediate most transcriptional differences in hybrid offspring. Approximately 67% and 62% of the 480 transcripts showed R9308 allelic expression biases at tillering and heading stages, respectively. Transcripts with higher levels of gene expression in R9308 also exhibited R9308 allelic biases in the hybrid. In addition, 125 transcripts were identified with significant allelic expression biases at both stages, of which 74% showed R9308 allelic expression biases. R9308 alleles may tend to preserve their characteristic states of activity in the hybrid and may play important roles in hybrid vigor at both stages. The allelic expression of 355 transcripts was highly stage-specific, with divergent allelic expression patterns observed at different developmental stages. Many transcripts associated with stress resistance were differently regulated in the F1 hybrid. The results of this study may provide valuable insights into molecular mechanisms of heterosis.


The Plant Cell | 2017

OsCUL3a Negatively Regulates Cell Death and Immunity by Degrading OsNPR1 in Rice

Qunen Liu; Yuese Ning; Yingxin Zhang; Ning Yu; Chunde Zhao; Xiaodeng Zhan; Weixun Wu; Daibo Chen; Xiangjin Wei; Guo-Liang Wang; Shihua Cheng; Liyong Cao

OsCUL3a interacts with and degrades OsNPR1 to regulate innate immunity in rice. Cullin3-based RING E3 ubiquitin ligases (CRL3), composed of Cullin3 (CUL3), RBX1, and BTB proteins, are involved in plant immunity, but the function of CUL3 in the process is largely unknown. Here, we show that rice (Oryza sativa) OsCUL3a is important for the regulation of cell death and immunity. The rice lesion mimic mutant oscul3a displays a significant increase in the accumulation of flg22- and chitin-induced reactive oxygen species, and in pathogenesis-related gene expression as well as resistance to Magnaporthe oryzae and Xanthomonas oryzae pv oryzae. We cloned the OsCUL3a gene via a map-based strategy and found that the lesion mimic phenotype of oscul3a is associated with the early termination of OsCUL3a protein. Interaction assays showed that OsCUL3a interacts with both OsRBX1a and OsRBX1b to form a multisubunit CRL in rice. Strikingly, OsCUL3a interacts with and degrades OsNPR1, which acts as a positive regulator of cell death in rice. Accumulation of OsNPR1 protein is greater in the oscul3a mutant than in the wild type. Furthermore, the oscul3a osnpr1 double mutant does not exhibit the lesion mimic phenotype of the oscul3a mutant. Our data demonstrate that OsCUL3a negatively regulates cell death and immunity by degrading OsNPR1 in rice.


Scientific Reports | 2016

Dissection of genetic architecture of rice plant height and heading date by multiple-strategy-based association studies.

Liyuan Zhou; Shouye Liu; Weixun Wu; Daibo Chen; Xiaodeng Zhan; Aike Zhu; Yingxin Zhang; Shihua Cheng; Liyong Cao; Xiangyang Lou; Haiming Xu

Xieyou9308 is a certified super hybrid rice cultivar with a high grain yield. To investigate its underlying genetic basis of high yield potential, a recombinant inbred line (RIL) population derived from the cross between the maintainer line XieqingzaoB (XQZB) and the restorer line Zhonghui9308 (ZH9308) was constructed for identification of quantitative trait SNPs (QTSs) associated with two important agronomic traits, plant height (PH) and heading date (HD). By re-sequencing of 138 recombinant inbred lines (RILs), a total of ~0.7 million SNPs were identified for the association studies on the PH and HD. Three association mapping strategies (including hypothesis-free genome-wide association and its two complementary hypothesis-engaged ones, QTL-based association and gene-based association) were adopted for data analysis. Using a saturated mixed linear model including epistasis and environmental interaction, we identified a total of 31 QTSs associated with either the PH or the HD. The total estimated heritability across three analyses ranged from 37.22% to 45.63% and from 37.53% to 55.96% for the PH and HD, respectively. In this study we examined the feasibility of association studies in an experimental population (RIL) and identified several common loci through multiple strategies which could be preferred candidates for further research.


Plant Science | 2017

OsCOL16, encoding a CONSTANS-like protein, represses flowering by up-regulating Ghd7 expression in rice

Weixun Wu; Xiao-Ming Zheng; Daibo Chen; Yingxin Zhang; Weiwei Ma; Huan Zhang; Lianping Sun; Zhengfu Yang; Chunde Zhao; Xiaodeng Zhan; Xihong Shen; Ping Yu; Yaping Fu; Shanshan Zhu; Liyong Cao; Shihua Cheng

Flowering time is an important agronomic trait that coordinates the plant life cycle with regional adaptability and thereby impacts yield potentials for cereal crops. The CONSTANS (CO)-like gene family plays vital roles in the regulation of flowering time. CO-like proteins are typically divided into four phylogenetic groups in rice. Several genes from groups I, III, and IV have been functionally characterized, though little is known about the genes of group II in rice. We report the functional characterization in rice of a constitutive floral inhibitor, OsCOL16, encoding a group-II CO-like protein that delays flowering time and increases plant height and grain yield. Overexpression of OsCOL16 resulted in late heading under both long-day and short-day conditions. OsCOL16 expression exhibits a diurnal oscillation and serves as a transcription factor with transcriptional activation activity. We determined that OsCOL16 up-regulates the expression of the floral repressor Ghd7, leading to down-regulation of the expression of Ehd1, Hd3a, and RFT1. Moreover, genetic diversity and evolutionary analyses suggest that remarkable differences in flowering times correlate with two major alleles of OsCOL16. Our combined molecular biology and phylogeographic analyses revealed that OsCOL16 plays an important role in regulating rice photoperiodic flowering, allowing for environmental adaptation of rice.


Gene | 2015

Genetic mapping of a QTL controlling source–sink size and heading date in rice

Xiaodeng Zhan; Bin Sun; Ze-Chuan Lin; Zhi-Qiang Gao; Ping Yu; Qunen Liu; Xihong Shen; Yingxin Zhang; Daibo Chen; Shihua Cheng; Liyong Cao

Source size, sink size and heading date (HD) are three important classes of traits that determine the productivity of rice. In this study, a set of recombinant inbred lines (RILs) derived from the cross between an elite indica line Big Grain1 (BG1) and a japonica line Xiaolijing (XLJ) were used to map quantitative trait loci (QTLs) for source-sink size and heading date. Totally, thirty-one QTLs for source size, twenty-two for sink size, four for heading date and seven QTL clusters which included QTLs for multiple traits were identified in three environmental trials. Thirty QTLs could be consistently detected in at least two trials and generally located in the clusters. Using a set of BC4F2 lines, the QTL cluster in C5-1-C5-2 on chromosome 5 was validated to be a major QTL pleiotropically affecting heading date, source size (flag leaf area) and panicle type (neck length of panicle, primary branching number and the ratio of secondary branching number to primary branching number), and was narrowed down to a 309.52Kb region. QTL clusters described above have a large effect on source-sink size and/or heading date, therefore they should be good resources to improve the adaptability and high yield potential of cultivars genetically.


Plant Science | 2017

ES7, encoding a ferredoxin-dependent glutamate synthase, functions in nitrogen metabolism and impacts leaf senescence in rice

Zhenzhen Bi; Yingxin Zhang; Weixun Wu; Xiaodeng Zhan; Ning Yu; Tingting Xu; Qunen Liu; Zhi Li; Xihong Shen; Daibo Chen; Shihua Cheng; Liyong Cao

Glutamate synthase (GOGAT) is a key enzyme for nitrogen metabolism and ammonium assimilation in plants. In this study, an early senescence 7 (es7) mutant was identified and characterized. The leaves of the es7 mutant begin to senesce at the tillering stage about 60day after sowing, and become increasingly senescent as the plants develop at the heading stage. When es7 plants are grown under photorespiration-suppressed conditions (high CO2), the senescence phenotype and chlorophyll content are rescued. qRT-PCR analysis showed that senescence- associated genes were up-regulated significantly in es7. A map-based cloning strategy was used to identify ES7, which encodes a ferredoxin-dependent glutamate synthase (Fd-GOGAT). ES7 was expressed constitutively, and the ES7 protein was localized in chloroplast. qRT-PCR analysis indicated that several genes related to nitrogen metabolism were differentially expressed in es7. Further, we also demonstrated that chlorophyll synthesis-associated genes were significantly down-regulated in es7. In addition, when seedlings are grown under increasing nitrogen concentrations (NH4NO3) for 15days, the contents of chlorophyll a, chlorophyll b and total chlorophyll were significantly lower in es7. Our results demonstrated that ES7 is involved in nitrogen metabolism, effects chlorophyll synthesis, and may also associated with photorespiration, impacting leaf senescence in rice.


Journal of Biotechnology | 2015

Genome sequence of Pseudomonas parafulva CRS01-1, an antagonistic bacterium isolated from rice field

Qunen Liu; Yingxin Zhang; Ning Yu; Zhenzhen Bi; Aike Zhu; Xiaodeng Zhan; Weixun Wu; Ping Yu; Daibo Chen; Shihua Cheng; Liyong Cao

Pseudomonas parafulva (formerly known as Pseudomonas fulva) is an antagonistic bacterium against several rice bacterial and fungal diseases. The total genome size of P. parafulva CRS01-1 is 5,087,619 bp with 4389 coding sequences (CDSs), 77 tRNAs, and 7 rRNAs. The annotated full genome sequence of the P. parafulva CRS01-1 strain might shed light on its role as an antagonistic bacterium.


Rice Science | 2014

QTL Mapping for Hull Thickness and Related Traits in Hybrid Rice Xieyou 9308

Li-li Luo; Yingxin Zhang; Daibo Chen; Xiaodeng Zhan; Xihong Shen; Shihua Cheng; Liyong Cao

We conducted a quantitative trait locus (QTL) analysis of 165 rice recombinant inbred lines derived from a cross between Zhonghui 9308 (Z9308) and Xieqingzao B (XB) in Hainan and Hangzhou, China. Grain thickness (GT), brown rice thickness (BRT), hull thickness (HT) and milling quality were used for QTL mapping. HT was significantly and positively correlated with GT and BRT. Twenty-nine QTLs were detected with phenotypic effects ranging from 2.80% to 21.27%. Six QTLs, qGT3, qBRT3, qBRT4, qHT6.1, qHT8 and qHT11, were detected repeatedly across two environments. Inherited from XB, qHT6.1, qHT8 and qHT11 showed stable expression, explaining 9.92%, 21.27% and 10.83% of the phenotypic variances in Hainan and 9.61%, 6.40% and 6.71% in Hangzhou, respectively. Additionally, the QTL cluster between RM5944 and RM5626 on chromosome 3 was probably responsible for GT and milling quality. The cluster between RM6992 and RM6473 on chromosome 4 played an important role in grain filling. Three near isogenic lines (NILs), X345, X338 and X389, were selected because they contained homozygous fragments from Zhonghui 9308, corresponding to qHT6.1, qHT8 and qHT11, respectively. The hull of XB was thicker than those of X345, X338 and X389. In all the lines, qHT6.1, qHT8 and qHT11 that regulated rice HT were stably inherited with obvious genetic effects.


Acta Agronomica Sinica | 2011

Phenotypic Correlation Among Root and Shoot Traits in an Elite Chinese Hybrid Rice Combination and Its Three Derived Populations

Yong-Shu Liang; Zhi-Qiang Gao; Xiaodeng Zhan; Yan-Li Chen; Daibo Chen; Xihong Shen; Liyong Cao; Shihua Cheng

Abstract To elucidate the phenotypic correlations among root and shoot traits in elite hybrid rice (Oryza sativa L.), 7 root and 10 shoot traits in an RIL population of Xieyou 9308 and 2 reciprocal backcross populations (BCF1) derived from the RILs were determined under hydroponic culture and field experiment conditions. All traits, except for root diameter, panicle number per plant and grain-setting rate, were significantly different between the 2 recurrent parents, and transgressive segregations and continuous distributions were observed in either root traits or shoot traits in the RIL or BCF1 populations. In the root traits, root length was positively correlated with total root length, dry root weight, root surface area, root volume, and number of root tips; however, root diameter was negatively correlated with other root traits. In the shoot traits, heading date, plant height, panicle length, spikelet number per panicle, grain-setting density, and grain yield per plant showed significant and positive correlations with all root traits except for root diameter. These results provide applicable shoot indices for indirect selection of root traits and valuable information for super hybrid rice breeding.

Collaboration


Dive into the Daibo Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge