Daiju Yamazaki
Kyoto University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daiju Yamazaki.
Cell Metabolism | 2011
Daiju Yamazaki; Yasuharu Tabara; Satomi Kita; Hironori Hanada; Shinji Komazaki; Daisuke Naitou; Aya Mishima; Miyuki Nishi; Hisao Yamamura; Shinichiro Yamamoto; Sho Kakizawa; Hitoshi Miyachi; Shintaro Yamamoto; Toshiyuki Miyata; Yuhei Kawano; Kei Kamide; Toshio Ogihara; Akira Hata; Satoshi Umemura; Masayoshi Soma; Norio Takahashi; Yuji Imaizumi; Tetsuro Miki; Takahiro Iwamoto; Hiroshi Takeshima
TRIC channel subtypes, namely TRIC-A and TRIC-B, are intracellular monovalent cation channels postulated to mediate counter-ion movements facilitating physiological Ca(2+) release from internal stores. Tric-a-knockout mice developed hypertension during the daytime due to enhanced myogenic tone in resistance arteries. There are two Ca(2+) release mechanisms in vascular smooth muscle cells (VSMCs); incidental opening of ryanodine receptors (RyRs) generates local Ca(2+) sparks to induce hyperpolarization, while agonist-induced activation of inositol trisphosphate receptors (IP(3)Rs) evokes global Ca(2+) transients causing contraction. Tric-a gene ablation inhibited RyR-mediated hyperpolarization signaling to stimulate voltage-dependent Ca(2+) influx, and adversely enhanced IP(3)R-mediated Ca(2+) transients by overloading Ca(2+) stores in VSMCs. Moreover, association analysis identified single-nucleotide polymorphisms (SNPs) around the human TRIC-A gene that increase hypertension risk and restrict the efficiency of antihypertensive drugs. Therefore, TRIC-A channels contribute to maintaining blood pressure, while TRIC-A SNPs could provide biomarkers for constitutional diagnosis and personalized medical treatment of essential hypertension.
Development | 2009
Daiju Yamazaki; Shinji Komazaki; Hiroki Nakanishi; Aya Mishima; Miyuki Nishi; Masayuki Yazawa; Tetsuo Yamazaki; Ryo Taguchi; Hiroshi Takeshima
TRIC channels function as monovalent cation-specific channels that mediate counter ion movements coupled with ryanodine receptor-mediated Ca2+ release from intracellular stores in muscle cells. Mammalian tissues differentially contain two TRIC channel subtypes: TRIC-A is abundantly expressed in excitable cells, whereas TRIC-B is ubiquitously expressed throughout tissues. Here, we report the physiological role of TRIC-B channels in mouse perinatal development. TRIC-B-knockout neonates were cyanotic owing to respiratory failure and died shortly after birth. In the mutant neonates, the deflated lungs exhibited severe histological defects, and alveolar type II epithelial cells displayed ultrastructural abnormalities. The metabolic conversion of glycogen into phospholipids was severely interrupted in the mutant type II cells, and surfactant phospholipids secreted into the alveolar space were insufficient in the mutant neonates. Moreover, the mutant type II cells were compromised for Ca2+ release mediated by inositol-trisphosphate receptors, despite Ca2+ overloading in intracellular stores. Our results indicate that TRIC-B channels take an active part in Ca2+ signalling to establish specialised functions in type II cells and are thus essential for perinatal lung maturation.
Journal of Biological Chemistry | 2010
Xiaoli Zhao; Daiju Yamazaki; Ki Ho Park; Shinji Komazaki; Andoria Tjondrokoesoemo; Miyuki Nishi; Peihui Lin; Yutaka Hirata; Marco Brotto; Hiroshi Takeshima; Jianjie Ma
The sarcoplasmic reticulum (SR) of skeletal muscle contains K+, Cl−, and H+ channels may facilitate charge neutralization during Ca2+ release. Our recent studies have identified trimeric intracellular cation (TRIC) channels on SR as an essential counter-ion permeability pathway associated with rapid Ca2+ release from intracellular stores. Skeletal muscle contains TRIC-A and TRIC-B isoforms as predominant and minor components, respectively. Here we test the physiological function of TRIC-A in skeletal muscle. Biochemical assay revealed abundant expression of TRIC-A relative to the skeletal muscle ryanodine receptor with a molar ratio of TRIC-A/ryanodine receptor ∼5:1. Electron microscopy with the tric-a−/− skeletal muscle showed Ca2+ overload inside the SR with frequent formation of Ca2+ deposits compared with the wild type muscle. This elevated SR Ca2+ pool in the tric-a−/− muscle could be released by caffeine, whereas the elemental Ca2+ release events, e.g. osmotic stress-induced Ca2+ spark activities, were significantly reduced likely reflecting compromised counter-ion movement across the SR. Ex vivo physiological test identified the appearance of “alternan” behavior with isolated tric-a−/− skeletal muscle, i.e. transient and drastic increase in contractile force appeared within the decreasing force profile during repetitive fatigue stimulation. Inhibition of SR/endoplasmic reticulum Ca2+ ATPase function could lead to aggravation of the stress-induced alternans in the tric-a−/− muscle. Our data suggests that absence of TRIC-A may lead to Ca2+ overload in SR, which in combination with the reduced counter-ion movement may lead to instability of Ca2+ movement across the SR membrane. The observed alternan behavior with the tric-a−/− muscle may reflect a skeletal muscle version of store overload-induced Ca2+ release that has been reported in the cardiac muscle under stress conditions.
Circulation Research | 2014
Xinyu Zhou; Peihui Lin; Daiju Yamazaki; Ki Ho Park; Shinji Komazaki; S. R. Wayne Chen; Hiroshi Takeshima; Jianjie Ma
Trimeric intracellular cation channels (TRIC) represents a novel class of trimeric intracellular cation channels. Two TRIC isoforms have been identified in both the human and the mouse genomes: TRIC-A, a subtype predominantly expressed in the sarcoplasmic reticulum (SR) of muscle cells, and TRIC-B, a ubiquitous subtype expressed in the endoplasmic reticulum (ER) of all tissues. Genetic ablation of either TRIC-A or TRIC-B leads to compromised K+ permeation and Ca2+ release across the SR/ER membrane, supporting the hypothesis that TRIC channels provide a counter balancing K+ flux that reduces SR/ER membrane depolarization for maintenance of the electrochemical gradient that drives SR/ER Ca2+ release. TRIC-A and TRIC-B seem to have differential functions in Ca2+ signaling in excitable and nonexcitable cells. Tric-a−/− mice display defective Ca2+ sparks and spontaneous transient outward currents in arterial smooth muscle and develop hypertension, in addition to skeletal muscle dysfunction. Knockout of TRIC-B results in abnormal IP3 receptor–mediated Ca2+ release in airway epithelial cells, respiratory defects, and neonatal lethality. Double knockout mice lacking both TRIC-A and TRIC-B show embryonic lethality as a result of cardiac arrest. Such an aggravated lethality indicates that TRIC-A and TRIC-B share complementary physiological functions in Ca2+ signaling in embryonic cardiomyocytes. Tric-a−/− and Tric-b+/− mice are viable and susceptible to stress-induced heart failure. Recent evidence suggests that TRIC-A directly modulates the function of the cardiac ryanodine receptor 2 Ca2+ release channel, which in turn controls store-overload–induced Ca2+ release from the SR. Thus, the TRIC channels, in addition to providing a countercurrent for SR/ER Ca2+ release, may also function as accessory proteins that directly modulate the ryanodine receptor/IP3 receptor channel functions.
Pflügers Archiv: European Journal of Physiology | 2013
Elisa Venturi; Rebecca Sitsapesan; Daiju Yamazaki; Hiroshi Takeshima
Trimeric intracellular cation-selective (TRIC) channel subtypes, namely TRIC-A and TRIC-B, are derived from distinct genes and distributed throughout the sarco/endoplasmic reticulum (SR/ER) and nuclear membranes. TRIC-A is preferentially expressed at high levels in excitable tissues, while TRIC-B is ubiquitously detected at relatively low levels in various tissues. TRIC channels are composed of ~300 amino acid residues and contain three putative membrane-spanning segments to form a bullet-shaped homo-trimeric assembly. Both native and purified recombinant TRIC subtypes form functional monovalent cation-selective channels in a lipid bilayer reconstitution system. The electrophysiological data indicate that TRIC channels behave as K+ channels under intracellular conditions, although the detailed channel characteristics remain to be investigated. The pathophysiological defects detected in knockout mice suggest that TRIC channels support SR/ER Ca2+ release mediated by ryanodine (RyR) and inositol trisphosphate receptor (IP3R) channels. For example, Tric-a-knockout mice develop hypertension resulting from vascular hypertonicity, and the mutant vascular smooth muscle cells exhibit insufficient RyR-mediated Ca2+ release for inducing hyperpolarization. Tric-b-knockout mice show respiratory failure at birth, and IP3R-mediated Ca2+ release essential for surfactant handling is impaired in the mutant alveolar epithelial cells. Moreover, double-knockout mice lacking both TRIC subtypes show embryonic heart failure, and SR Ca2+ handling is deranged in the mutant cardiomyocytes. Current evidence strongly suggests that TRIC channels mediate counter-K+ movements, in part, to facilitate physiological Ca2+ release from intracellular stores.
Molecular and Cellular Biology | 2016
Sayuri Gyobu; Haruhiko Miyata; Masahito Ikawa; Daiju Yamazaki; Hiroshi Takeshima; Jun Suzuki; Shigekazu Nagata
ABSTRACT Transmembrane protein 16E (TMEM16E) belongs to the TMEM16 family of proteins that have 10 transmembrane regions and appears to localize intracellularly. Although TMEM16E mutations cause bone fragility and muscular dystrophy in humans, its biochemical function is unknown. In the TMEM16 family, TMEM16A and -16B serve as Ca2+-dependent Cl− channels, while TMEM16C, -16D, -16F, -16G, and -16J support Ca2+-dependent phospholipid scrambling. Here, we show that TMEM16E carries a segment composed of 35 amino acids homologous to the scrambling domain in TMEM16F. When the corresponding segment of TMEM16A was replaced by this 35-amino-acid segment of TMEM16E, the chimeric molecule localized to the plasma membrane and supported Ca2+-dependent scrambling. We next established TMEM16E-deficient mice, which appeared to have normal skeletal muscle. However, fertility was decreased in the males. We found that TMEM16E was expressed in germ cells in early spermatogenesis and thereafter and localized to sperm tail. TMEM16E−/− sperm showed no apparent defect in morphology, beating, mitochondrial function, capacitation, or binding to zona pellucida. However, they showed reduced motility and inefficient fertilization of cumulus-free but zona-intact eggs in vitro. Our results suggest that TMEM16E may function as a phospholipid scramblase at inner membranes and that its defect affects sperm motility.
Pharmacology & Therapeutics | 2009
Daiju Yamazaki; Tetsuo Yamazaki; Hiroshi Takeshima
Ca(2+) mobilization from intracellular stores is mediated by Ca(2+) release channels, designated ryanodine and IP(3) receptors, and directly regulates important cellular reactions including muscle contraction, endo/exocrine secretion, and neural excitability. In order to function as an intracellular store, the endo/sarcoplasmic reticulum is equipped with cooperative Ca(2+) uptake, storage and release machineries, comprising synergic collaborations among integral-membrane, cytoplasmic and luminal proteins. Our recent studies have demonstrated that junctophilins form junctional membrane complexes between the plasma membrane and the endo/sarcoplasmic reticulum in excitable cells, and that TRIC (trimeric intracellular cation) channels act as novel monovalent cation-specific channels on intracellular membrane systems. Knockout mice have provided evidence that both junctophilins and TRIC channels support efficient ryanodine receptor-mediated Ca(2+) release in muscle cells. This review focuses on cardiac Ca(2+) release by discussing pathological defects of mutant cardiomyocytes lacking ryanodine receptors, junctophilins, or TRIC channels.
Channels | 2011
Xiaoli Zhao; Daiju Yamazaki; Sho Kakizawa; Zui Pan; Hiroshi Takeshima; Jianjie Ma
Ca2+ signaling in skeletal and cardiac muscles is a bi-directional process that involves cross-talk between signaling molecules in the sarcolemmal membrane and Ca2+ release machinery in the intracellular organelles. Maintenance of a junctional membrane structure between the sarcolemmal membrane and the sarcoplasmic reticulum (SR) provides a framework for the conversion of action potential arrived at the sarcolemma into release of Ca2+ from the SR, leading to activation of a variety of physiological processes. Activity-dependent changes in Ca2+ storage inside the SR provides a retrograde signal for the activation of store-operated Ca2+ channel (SOC) on the sarcolemmal membrane, which plays important roles in the maintenance of Ca2+ homeostasis in physiology and pathophysiology. Research progress during the last 30 years had advanced our understanding of the cellular and molecular mechanisms for the control of Ca2+ signaling in muscle and cardiovascular physiology. Here we summarize the functions of three key molecules that are located in the junctional membrane complex of skeletal and cardiac muscle cells: junctophilin as a “glue” that physiologically links the SR membrane to the sarcolemmal membrane for formation of the junctional membrane framework, mitsugumin29 as a muscle-specific synaptophysin family protein that contributes to maintain the coordinated Ca2+ signaling in skeletal muscle, and TRIC as a novel cation-selective channel located on the SR membrane that provides counter-ion current during the rapid process of Ca2+ release from the SR.
Biochemical and Biophysical Research Communications | 2011
Hiroaki Kito; Daiju Yamazaki; Susumu Ohya; Hisao Yamamura; Kiyofumi Asai; Yuji Imaizumi
Brain capillary endothelial cells (BCECs) form blood brain barrier (BBB) to maintain brain homeostasis. Cell turnover of BCECs by the balance of cell proliferation and cell death is critical for maintaining the integrity of BBB. Here we found that stimuli with tunicamycin, endoplasmic reticulum (ER) stress inducer, up-regulated inward rectifier K(+) channel (K(ir)2.1) and facilitated cell death in t-BBEC117, a cell line derived from bovine BCECs. The activation of K(ir) channels contributed to the establishment of deeply negative resting membrane potential in t-BBEC117. The deep resting membrane potential increased the resting intracellular Ca(2+) concentration due to Ca(2+) influx through non-selective cation channels and thereby partly but significantly regulated cell death in t-BBEC117. The present results suggest that the up-regulation of K(ir)2.1 is, at least in part, responsible for cell death/cell turnover of BCECs induced by a variety of cellular stresses, particularly ER stress, under pathological conditions.
American Journal of Physiology-cell Physiology | 2011
Daiju Yamazaki; Hiroaki Kito; Seiji Yamamoto; Susumu Ohya; Hisao Yamamura; Kiyofumi Asai; Yuji Imaizumi
Cellular turnover of brain capillary endothelial cells (BCECs) by the balance of cell proliferation and death is essential for maintaining the homeostasis of the blood-brain barrier. Stimulation of metabotropic ATP receptors (P2Y) transiently increased intracellular Ca²(+) concentration ([Ca²(+)](i)) in t-BBEC 117, a cell line derived from bovine BCECs. The [Ca²(+)](i) rise induced membrane hyperpolarization via the activation of apamin-sensitive small-conductance Ca²(+)-activated K(+) channels (SK2) and enhanced cell proliferation in t-BBEC 117. Here, we found anomalous membrane hyperpolarization lasting for over 10 min in response to ATP in ∼15% of t-BBEC 117, in which inward rectifier K(+) channel (K(ir)2.1) was extensively expressed. Once anomalous hyperpolarization was triggered by ATP, it was removed by Ba²(+) but not by apamin. Prolonged exposure to ATPγS increased the relative population of t-BBEC 117, in which the expression of K(ir)2.1 mRNAs was significantly higher and Ba²(+)-sensitive anomalous hyperpolarization was observed. The cultivation of t-BBEC 117 in serum-free medium also increased this population and reduced the cell number. The reduction of cell number was enhanced by the addition of ATPγS and the enhancement was antagonized by Ba²(+). In the human embryonic kidney 293 cell model, where SK2 and K(ir)2.1 were heterologously coexpressed, [Ca²(+)](i) rise by P2Y stimulation triggered anomalous hyperpolarization and cell death. In conclusion, P2Y stimulation in BCECs enhances cell proliferation by SK2 activation in the majority of cells but also triggers cell death in a certain population showing a substantial expression of K(ir)2.1. This dual action of P2Y stimulation may effectively facilitate BCEC turnover.