Daijun Zhang
Chongqing University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daijun Zhang.
Water Research | 2009
Lisha Guo; Daijun Zhang; Danyu Xu; Yuan Chen
Particle Image Velocimetry (PIV) was used to study the settling of activated sludge flocs under turbulent flow conditions. Experimental results showed that a larger particle diameter led to a higher settling velocity while the higher turbulence intensity led to lower settling velocity. Based on the measurements a mathematical relation has been derived which correlates the settling velocity for individual sludge flocs under turbulent conditions through a modified Vesilind equation. Settling velocity shows a power-type relation to sludge particle diameter and an exponential-type relation with turbulence intensity and sludge concentration.
Bioresource Technology | 2013
Zongbao Yao; Qing Cai; Daijun Zhang; Pengying Xiao; Peili Lu
The long-term addition of N2H4 to completely autotrophic nitrogen removal over nitrite (CANON) sequencing batch reactors (SBRs) recovered and enhanced their autotrophic nitrogen removal capacity while simultaneously reducing their production of NO3(-). The total nitrogen (TN) removal rate and TN removal efficiency of the process increased from 0.202±0.011 to 0.370±0.016 kg N/m(3)/d and from 65.1±3.75% to 77.4±3.8%, respectively, and the molar ratio of NO3(-) production to NH4(+) removal (MRNN) decreased to 0.058. The most effective concentration of N2H4 addition was approximately 3.99 mg/L. N2H4 could increase the specific growth rate of anaerobic ammonium-oxidizing bacteria (AnAOB) and inhibit aerobic ammonia oxidation. The electrons released from the oxidation of additional N2H4 using hydrazine dehydrogenase (HDH), which substituted the electrons from NO2(-) oxidation to NO3(-), replenished the consumption of AnAOB anabolism and significantly reduced the consequent NO3(-) production.
Bioresource Technology | 2015
Zongbao Yao; Peili Lu; Daijun Zhang; Xinyu Wan; Yulian Li; Shuchan Peng
Purpose of this study is to investigate the stoichiometry and kinetics of anaerobic ammonium oxidation (Anammox) with trace hydrazine addition. The stoichiometry was established based on the electron balance of Anammox process with trace N2H4 addition. The stoichiometric coefficients were determined by the proton consumption and the changes in substrates and products. It was found that trace N2H4 addition can increase the yield of Anammox bacteria (AnAOB) and reduce NO3(-) yield, which enhances the Anammox. Subsequently, kinetic model of Anammox with trace N2H4 addition was developed, and the parameters of the anaerobic degradation model of N2H4 were obtained for the first time. The maximum specific substrate utilization rate, half-saturation constant and inhibition constant of N2H4 were 25.09mgN/g VSS/d, 10.42mgN/L and 1393.88mgN/L, respectively. These kinetic parameters might provide important information for the engineering applications of Anammox with trace N2H4 addition.
Bioresource Technology | 2015
Pengying Xiao; Peili Lu; Daijun Zhang; Xinkuan Han; Qingxiang Yang
A sequencing batch reactor (SBR) was conducted to perform completely autotrophic nitrogen removal over nitrite (CANON). The effect of long-term trace N2H4 addition on ammonium oxidizing bacteria (AOB) and anaerobic AOB (AnAOB) in the CANON system was investigated. AOB and AnAOB primarily related to Nitrosococcus, Nitrosomonas and Candidatus scalindua, respectively. Before and after trace N2H4 addition, the estimates of AOB population decreased from 1.03×10(7) to 6.25×10(4)copies/g (dry sludge), but that of AnAOB increased from 3.14×10(9) to 5.86×10(10)copies/g (dry sludge). Despite there was a partially negative impact on AOB growth, the trace N2H4 addition exerted a stronger inhibition on nitrite oxidizing bacteria (NOB) and promoted AnAOB growth, which improved the nitrogen removal of the CANON system. Sludge granules enriched under long-term trace N2H4 addition were spherical and ellipsoidal, and the aerobic AOB were mainly located on the outer layers while AnAOB occupied most of the interior parts.
Water Research | 2010
Tian Zhang; Daijun Zhang; Zhenliang Li; Qing Cai
The calibration of ASMs is a prerequisite for their application to simulation of a wastewater treatment plant. This work should be made based on the evaluation of structural identifiability of model parameters. An EBPR sub-model including denitrification phosphorus removal has been incorporated in ASM2d. Yet no report is presented on the structural identifiability of the parameters in the EBPR sub-model. In this paper, the differential algebra approach was used to address this issue. The results showed that the structural identifiability of parameters in the EBPR sub-model could be improved by increasing the measured variables. The reduction factor eta(NO)(3) was identifiable when combined data of aerobic process and anoxic process were assumed. For K(PP), X(PAO) and q(PHA) of the anaerobic process to be uniquely identifiable, one of them is needed to be determined by other ways. Likewise, if prior information on one of the parameters, K(PHA), X(PAO) and q(PP) of the aerobic process, is known, all the parameters are identifiable. The above results could be of interest to the parameter estimation of the EBPR sub-model. The algorithm proposed in the paper is also suitable for other sub-models of ASMs.
Water Science and Technology | 2015
Xinyu Wan; Pengying Xiao; Daijun Zhang; Peili Lu; Zongbao Yao; Qiang He
The kinetics for ammonium (NH4(+)) oxidation and nitrite (NO2(-)) oxidation under the effect of hydroxylamine (NH2OH) were studied by respirometry using the nitrifying sludge from a laboratory-scale sequencing batch reactor. Modified models were used to estimate kinetics parameters of ammonia and nitrite oxidation under the effect of hydroxylamine. An inhibition effect of hydroxylamine on the ammonia oxidation was observed under different hydroxylamine concentration levels. The self-inhibition coefficient of hydroxylamine oxidation and noncompetitive inhibition coefficient of hydroxylamine for nitrite oxidation was estimated by simulating exogenous oxygen-uptake rate profiles, respectively. The inhibitive effect of NH2OH on nitrite-oxidizing bacteria was stronger than on ammonia-oxidizing bacteria. This work could provide fundamental data for the kinetic investigation of the nitrification process.
Water Research | 2018
Xiaoting Zhang; Daijun Zhang; Yongkui Huang; Kai Zhang; Peili Lu
The high volume of flowback water (FW) generated during shale gas exploitation is highly saline, and contains complex organics, iron, heavy metals, and sulfate, thereby posing a significant challenge for the environmental management of the unconventional natural gas industry. Herein, the treatment of FW in a sulfur-cycle-mediated microbial fuel cell (MFC) is reported. Simultaneous removal efficiency for chemical oxygen demand (COD) and total iron from a synthetic FW was achieved, at 72 ± 7% and 90.6 ± 8.7%, respectively, with power generation of 2667 ± 529 mW/m3 in a closed-circuit MFC (CC-MFC). However, much lower iron removal (38.5 ± 4.5%) occurred in the open-circuit MFC (OC-MFC), where the generated FeS fine did not precipitate because of sulfide supersaturation. Enrichment of both sulfur-oxidizing bacteria (SOB), namely Helicobacteraceae in the anolyte and the electricity-producing bacteria, namely Desulfuromonadales on the anode likely accelerated the sulfur cycle through the biological and bioelectrochemical oxidation of sulfide in the anodic chamber, and effectively increased the molar ratio of total iron to sulfide, thus alleviating sulfide supersaturation in the closed circuitry. Enrichment of SOB in the anolyte might be attributed to the formation of FeS electricity wire and likely contributed to the stable high power generation. Bacteroidetes, Firmicutes, Proteobacteria, and Chloroflexi enriched in the anodic chamber were responsible for degrading complex organics in the FW. The treatment of real FW in the sulfur-cycle-mediated MFC also achieved high efficiency. This research provides a promising approach for the treatment of wastewater containing organic matters, heavy metals, and sulfate by using a sulfur-cycle-mediated MFC.
Mathematical Problems in Engineering | 2018
Zhenliang Li; Peili Lu; Daijun Zhang; Tian Zhang
Identifiability analysis is a precondition for reliable parameter estimation. Building on previous work on structural identifiability, this paper focuses on the practical identifiability and optimal experimental design (OED) of the EBPR anaerobic submodel. The nonnegative determinant of the Fisher informationmatrix (FIM) found in this study clearly demonstrates that the parametersYPO4, KA, qPHA, and XPAO in the submodel are practically identifiable using SA and SPO4 as the measured variables and fixing KPP as the default value. Furthermore, fixing KPP to study the practical identifiability of the other parameters and to estimate their values is shown to be valid. Subsequently, a modeling-based procedure for the OED for parameter estimation was proposed and applied successfully to anaerobic phosphorus release experiments. According to the FIM D-criterion, the optimal experimental condition was determined to be an initial SA concentration of 300mg/L. Under the optimal experimental condition, errors in the values of YPO4,KA, qPHA, andXPAO are all below 20%, and the estimated values were 0.35 ± 0.02mg P/mg COD, 3.88 ± 0.41mg COD/L, 3.35 ± 0.27mg P/(mg COD ∗ d−1), and 1500 ± 72mg COD/L, respectively. Compared to the results from the nonoptimal experimental condition, the practical identifiability and the estimation precision of the four parameters were improved.
Chemosphere | 2018
Xiaoting Zhang; Aoxiang Chen; Daijun Zhang; Shuangwu Kou; Peili Lu
The extensive application of hydraulic fracturing technology has significantly promoted the large-scale development of shale gas. However, it is a great challenge for shale gas extraction to effectively manage large-volume flowback water (FW) with high salinity and complex organic substances. Here, we report an aerobic granular sludge (AGS) tolerable to high salinity, and suited to the treatment of FW. The performance of a sequencing batch reactor (SBR) with the AGS for the treatment of the synthetic FW and the microbial community structure at different salinity levels were investigated. The AGS fed with synthetic FW possessed a larger average particle size and a higher settling rate (50 m h-1). When NaCl concentration increased to 50.0 g L-1, the removal efficiency of total organic carbon (TOC) increased to 79 ± 1%, and the removal rate of polyacrylamide (PAM) raised up to 42.7 ± 0.7 g m-3 d-1. Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Sphingobacteriia dominated in the microbial community of AGS. Cellvibrionaceae, Rhodocyclaceae, Enterobacteriaceae, Moraxellaceae, Pseudomonadaceae, and Halomonadaceae belonging to Betaproteobacteria and Gammaproteobacteria played important role in degrading PAM, polycyclic aromatic hydrocarbons (PAH), and some other organics in FW at high salinity. These results suggest that an AGS-based SBR is a promising technology for the treatment of FW.
Geoinformatics & Geostatistics: An Overview | 2016
Lilan Zhang; Peili Lu; Fuzhong Song; Daijun Zhang; Kaixuan Li
Triclosan (TCS) is a synthetic broad spectrum antimicrobial agent that has been added in amounts of personal care products and household products. Its widespread use and resistant to degradation resulted in the inevitably release into aquatic environment and thus its potential toxicity towards aquatic organisms is of concern. To understand the risk associated with TCS in aquatic ecosystems, a min review of available literature on its acute and chronic toxicity towards aquatic organisms was conducted in this study. The acute toxicity data showed that TCS always would not show lethal effects at realistic concentration and the LC50 of TCS towards different trophic species spanned more than six orders of magnitude in concentration. Among the tested organisms, algae are the most sensitive species. The chronic toxicity data of TCS on aquatic microorganisms, microalgae, aquatic macrophytes, invertebrates and fishes were systematically collected. TCS show endocrine disruption, cytotoxic, and genotoxic effects on tested organisms, and its toxicity would be enhanced or reduced while coexisting with other pollutants or environmental parameters. Its selection and spread of multidrug resistance, microorganisms should be of concern and the potential combination effects of heavy mental and TCS on cross-resistance of microorganisms might be explored in the future due to their same selective function on multidrug resistance. Daphnia and rotifer are two major components of aquatic invertebrates; more comprehensive researches have been conduct to reveal the response of Daphnia to TCS exposure while just three studies were conducted to assess its toxicity on rotifer. Considering limited ecotoxicological information and significant TCS LC50/EC50 variations to aquatic species, further studies on potential consequences of long-term TCS exposure to more abundant and ecologically relevant species are critically need to better regulate its utilization, and the effects of environmental parameters should be taken into consideration while investigating TCS toxicity towards target species due to their significant effects.