Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daisuke Hoshino is active.

Publication


Featured researches published by Daisuke Hoshino.


Nature Communications | 2015

Directional cell movement through tissues is controlled by exosome secretion

Bong Hwan Sung; Tatiana Ketova; Daisuke Hoshino; Andries Zijlstra; Alissa M. Weaver

Directional cell movement through tissues is critical for multiple biological processes and requires maintenance of polarity in the face of complex environmental cues. Here we use intravital imaging to demonstrate that secretion of exosomes from late endosomes is required for directionally persistent and efficient in vivo movement of cancer cells. Inhibiting exosome secretion or biogenesis leads to defective tumour cell migration associated with increased formation of unstable protrusions and excessive directional switching. In vitro rescue experiments with purified exosomes and matrix coating identify adhesion assembly as a critical exosome function that promotes efficient cell motility. Live-cell imaging reveals that exosome secretion directly precedes and promotes adhesion assembly. Fibronectin is found to be a critical motility-promoting cargo whose sorting into exosomes depends on binding to integrins. We propose that autocrine secretion of exosomes powerfully promotes directionally persistent and effective cell motility by reinforcing otherwise transient polarization states and promoting adhesion assembly.


International Journal of Cell Biology | 2012

Turnover of Focal Adhesions and Cancer Cell Migration

Makoto Nagano; Daisuke Hoshino; Naohiko Koshikawa; Toshifumi Akizawa; Motoharu Seiki

Cells are usually surrounded by the extracellular matrix (ECM), and adhesion of the cells to the ECM is a key step in their migration through tissues. Integrins are important receptors for the ECM and form structures called focal adhesions (FAs). Formation and disassembly of FAs are regulated dynamically during cell migration. Adhesion to the ECM has been studied mainly using cells cultured on an ECM-coated substratum, where the rate of cell migration is determined by the turnover of FAs. However, the molecular events underlying the disassembly of FAs are less well understood. We have recently identified both a new regulator of this disassembly process and its interaction partners. Here, we summarize our understanding of FA disassembly by focusing on the proteins implicated in this process.


Cell Reports | 2016

KRAS-MEK Signaling Controls Ago2 Sorting into Exosomes

Andrew McKenzie; Daisuke Hoshino; Nan Hyung Hong; Diana J. Cha; Jeffrey L. Franklin; Robert J. Coffey; James G. Patton; Alissa M. Weaver

Summary Secretion of RNAs in extracellular vesicles is a newly recognized form of intercellular communication. A potential regulatory protein for microRNA (miRNA) secretion is the critical RNA-induced silencing complex (RISC) component Argonaute 2 (Ago2). Here, we use isogenic colon cancer cell lines to show that overactivity of KRAS due to mutation inhibits localization of Ago2 to multivesicular endosomes (MVEs) and decreases Ago2 secretion in exosomes. Mechanistically, inhibition of mitogen-activated protein kinase kinases (MEKs) I and II, but not Akt, reverses the effect of the activating KRAS mutation and leads to increased Ago2-MVE association and increased exosomal secretion of Ago2. Analysis of cells expressing mutant Ago2 constructs revealed that phosphorylation of Ago2 on serine 387 prevents Ago2-MVE interactions and reduces Ago2 secretion into exosomes. Furthermore, regulation of Ago2 exosomal sorting controls the levels of three candidate miRNAs in exosomes. These data identify a key regulatory signaling event that controls Ago2 secretion in exosomes.


Journal of Biological Chemistry | 2009

A Novel Protein Associated with Membrane-type 1 Matrix Metalloproteinase Binds p27kip1 and Regulates RhoA Activation, Actin Remodeling, and Matrigel Invasion

Daisuke Hoshino; Taizo Tomari; Makoto Nagano; Naohiko Koshikawa; Motoharu Seiki

Pericellular proteolysis by membrane-type 1 matrix metalloproteinase (MT1-MMP) plays a pivotal role in tumor cell invasion. Localization of MT1-MMP at the invasion front of cells, e.g. on lamellipodia and invadopodia, has to be regulated in coordination with reorganization of the actin cytoskeleton. However, little is known about how such invasion-related actin structures are regulated at the sites where MT1-MMP localizes. During analysis of MT1-MMP-associated proteins, we identified a heretofore uncharacterized protein. This protein, which we call p27RF-Rho, enhances activation of RhoA by releasing it from inhibition by p27kip1 and thereby regulates actin structures. p27kip1 is a well known cell cycle regulator in the nucleus. In contrast, cytoplasmic p27kip1 has been demonstrated to bind GDP-RhoA and inhibit GDP-GTP exchange mediated by guanine nucleotide exchange factors. p27RF-Rho binds p27kip1 and prevents p27kip1 from binding to RhoA, thereby freeing the latter for activation. Knockdown of p27RF-Rho expression renders cells resistant to RhoA activation stimuli, whereas overexpression of p27RF-Rho sensitizes cells to such stimulation. p27RF-Rho exhibits a punctate distribution in invasive human tumor cell lines. Stimulation of the cells with lysophosphatidic acid induces activation of RhoA and induces the formation of punctate actin structures within foci of p27RF-Rho localization. Some of the punctate actin structures co-localize with MT1-MMP and cortactin. Down-regulation of p27RF-Rho prevents both redistribution of actin into the punctate structures and tumor cell invasion. Thus, p27RF-Rho is a new potential target for cancer therapy development.


Journal of Cell Biology | 2016

Cortactin promotes exosome secretion by controlling branched actin dynamics.

Seema Sinha; Daisuke Hoshino; Nan Hyung Hong; Kellye C. Kirkbride; Nathan E. Grega-Larson; Motoharu Seiki; Matthew J. Tyska; Alissa M. Weaver

Sinha et al. show that the cytoskeletal and tumor-overexpressed protein cortactin promotes secretion of exosomes from cancer cells by stabilizing dynamic cortical actin docking sites for multivesicular endosomes, suggesting a potential mechanism by which cortactin may promote tumor aggressiveness.


Journal of Biological Chemistry | 2011

A p27kip1-binding Protein, p27RF-Rho, Promotes Cancer Metastasis via Activation of RhoA and RhoC

Daisuke Hoshino; Naohiko Koshikawa; Motoharu Seiki

Rho family proteins regulate multiple cellular functions including motility and invasion through regulation of the actin cytoskeleton and gene expression. Activation of Rho proteins is controlled precisely by multiple regulators in a spatiotemporal manner. RhoA and/or RhoC are key players that regulate the metastatic activity of malignant tumor cells, and it is therefore of particular interest to understand how activation of these Rho proteins is controlled. We recently identified an upstream regulator of RhoA activation, p27RF-Rho (p27kip1 releasing factor from RhoA) that acts by freeing RhoA from inhibition by p27kip1. p27kip1 is a cell cycle regulator when it is localized to the nucleus, but it binds RhoA and inhibits activation of the latter when it is localized to the cytoplasm. Here, we show that a metastatic variant of mouse melanoma B16 cells (F10) exhibits greater expression of p27RF-Rho, RhoA, and RhoC than the nonmetastatic parental cells (F0). Injection of F10 cells into mouse tail vein resulted in the formation of metastatic lung colonies, whereas prior knockdown of expression of either one of the three proteins using specific shRNA sequences decreased metastasis markedly. p27RF-Rho regulated the activation of RhoA and RhoC and thereby modulated cellular adhesion and motility, in addition to pericellullar proteolysis. The Rho activities enhanced by p27RF-Rho had a marked effect upon efficiency of lodging of F10 cells in the lung, which represents an early step of metastasis. p27RF-Rho also regulated metastasis of human melanoma and fibrosarcoma cells. Thus, p27RF-Rho is a key upstream regulator of RhoA and RhoC that controls spreading of tumor cells.


Journal of Biological Chemistry | 2010

ZF21 protein regulates cell adhesion and motility.

Makoto Nagano; Daisuke Hoshino; Takeharu Sakamoto; Noritaka Kawasaki; Naohiko Koshikawa; Motoharu Seiki

Cell migration on an extracellular matrix (ECM) requires continuous formation and turnover of focal adhesions (FAs) along the direction of cell movement. However, our knowledge of the components of FAs and the mechanism of their regulation remains limited. Here, we identify ZF21, a member of a protein family characterized by the presence of a phosphatidylinositol 3-phosphate-binding FYVE domain, to be a new regulator of FAs and cell movement. Knockdown of ZF21 expression in cells increased the number of FAs and suppressed cell migration. Knockdown of ZF21 expression also led to a significant delay in FA disassembly following induction of synchronous disassembly of FAs by nocodazole treatment. ZF21 bound to focal adhesion kinase, localized to FAs, and was necessary for dephosphorylation of FAK at Tyr397, which is important for disassembly of FAs. Thus, ZF21 represents a new component of FAs, mediates disassembly of FAs, and thereby regulates cell motility.


Molecular & Cellular Proteomics | 2015

Activating PIK3CA Mutations Induce an Epidermal Growth Factor Receptor (EGFR)/Extracellular Signal-regulated Kinase (ERK) Paracrine Signaling Axis in Basal-like Breast Cancer

Christian D. Young; Lisa J. Zimmerman; Daisuke Hoshino; Luigi Formisano; Ariella B. Hanker; Michael L. Gatza; Meghan M. Morrison; Preston D. Moore; Corbin A. Whitwell; Bhuvanesh Dave; Thomas Stricker; Neil E. Bhola; Grace O. Silva; Premal Patel; Dana M. Brantley-Sieders; Maren K. Levin; Marina Horiates; Norma Alonzo Palma; Kai Wang; Philip J. Stephens; Charles M. Perou; Alissa M. Weaver; Joyce O'Shaughnessy; Jenny C. Chang; Ben Ho Park; Daniel C. Liebler; Rebecca S. Cook; Carlos L. Arteaga

Mutations in PIK3CA, the gene encoding the p110α catalytic subunit of phosphoinositide 3-kinase (PI3K) have been shown to transform human mammary epithelial cells (MECs). These mutations are present in all breast cancer subtypes, including basal-like breast cancer (BLBC). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified 72 protein expression changes in human basal-like MECs with knock-in E545K or H1047R PIK3CA mutations versus isogenic MECs with wild-type PIK3CA. Several of these were secreted proteins, cell surface receptors or ECM interacting molecules and were required for growth of PIK3CA mutant cells as well as adjacent cells with wild-type PIK3CA. The proteins identified by MS were enriched among human BLBC cell lines and pointed to a PI3K-dependent amphiregulin/EGFR/ERK signaling axis that is activated in BLBC. Proteins induced by PIK3CA mutations correlated with EGFR signaling and reduced relapse-free survival in BLBC. Treatment with EGFR inhibitors reduced growth of PIK3CA mutant BLBC cell lines and murine mammary tumors driven by a PIK3CA mutant transgene, all together suggesting that PIK3CA mutations promote tumor growth in part by inducing protein changes that activate EGFR.


Cancer Research | 2015

Proteolysis of EphA2 Converts It from a Tumor Suppressor to an Oncoprotein.

Naohiko Koshikawa; Daisuke Hoshino; Hiroaki Taniguchi; Tomoko Minegishi; Taizo Tomari; Sung-Ouk Nam; Mitsuko Aoki; Takayuki Sueta; Takashi Nakagawa; Shingo Miyamoto; Kazuki Nabeshima; Alissa M. Weaver; Motoharu Seiki

Eph receptor tyrosine kinases are considered candidate therapeutic targets in cancer, but they can exert opposing effects on cell growth. In the presence of its ligands, Eph receptor EphA2 suppresses signaling by other growth factor receptors, including ErbB, whereas ligand-independent activation of EphA2 augments ErbB signaling. To deploy EphA2-targeting drugs effectively in tumors, the anti-oncogenic ligand-dependent activation state of EphA2 must be discriminated from its oncogenic ligand-independent state. Because the molecular basis for the latter is little understood, we investigated how the activation state of EphA2 can be switched in tumor tissue. We found that ligand-binding domain of EphA2 is cleaved frequently by the membrane metalloproteinase MT1-MMP, a powerful modulator of the pericellular environment in tumor cells. EphA2 immunostaining revealed a significant loss of the N-terminal portion of EphA2 in areas of tumor tissue that expressed MT1-MMP. Moreover, EphA2 phosphorylation patterns that signify ligand-independent activation were observed specifically in these areas of tumor tissue. Mechanistic experiments revealed that processing of EphA2 by MT1-MMP promoted ErbB signaling, anchorage-independent growth, and cell migration. Conversely, expression of a proteolysis-resistant mutant of EphA2 prevented tumorigenesis and metastasis of human tumor xenografts in mice. Overall, our results showed how the proteolytic state of EphA2 in tumors determines its effector function and influences its status as a candidate biomarker for targeted therapy.


Journal of Biological Chemistry | 2011

ZF21 Protein, a Regulator of the Disassembly of Focal Adhesions and Cancer Metastasis, Contains a Novel Noncanonical Pleckstrin Homology Domain

Makoto Nagano; Daisuke Hoshino; Seizo Koshiba; Takuya Shuo; Naohiko Koshikawa; Tadashi Tomizawa; Fumiaki Hayashi; Naoya Tochio; Takushi Harada; Toshifumi Akizawa; Satoru Watanabe; Noriko Handa; Mikako Shirouzu; Takanori Kigawa; Shigeyuki Yokoyama; Motoharu Seiki

Directional migration of adherent cells on an extracellular matrix requires repeated formation and disassembly of focal adhesions (FAs). Directional migration of adherent cellsWe have identified ZF21 as a regulator of disassembly of FAs and cell migration, and increased expression of the gene has been linked to metastatic colon cancer. ZF21 is a member of a protein family characterized by the presence of the FYVE domain, which is conserved among Fab1p, YOPB, Vps27p, and EEA1 proteins, and has been shown to mediate the binding of such proteins to phosphoinositides in the lipid layers of cell membranes. ZF21 binds multiple factors that promote disassembly of FAs such as FAK, β-tubulin, m-calpain, and SHP-2. ZF21 does not contain any other known protein motifs other than the FYVE domain, but a region of the protein C-terminal to the FYVE domain is sufficient to mediate binding to β-tubulin. In this study, we demonstrate that the C-terminal region is important for the ability of ZF21 to induce disassembly of FAs and cell migration, and to promote an early step of experimental metastasis to the lung in mice. In light of the importance of the C-terminal region, we analyzed its ternary structure using NMR spectroscopy. We demonstrate that this region exhibits a structure similar to that of a canonical pleckstrin homology domain, but that it lacks a positively charged interface to bind phosphatidylinositol phosphate. Thus, ZF21 contains a novel noncanonical PH-like domain that is a possible target to develop a therapeutic strategy to treat metastatic cancer.

Collaboration


Dive into the Daisuke Hoshino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Wirtz

Tripler Army Medical Center

View shared research outputs
Top Co-Authors

Avatar

Nan Hyung Hong

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge