Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daisuke Imamura is active.

Publication


Featured researches published by Daisuke Imamura.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Essential Bacillus subtilis genes

Kazuo Kobayashi; S D Ehrlich; Alessandra M. Albertini; G. Amati; Kasper Krogh Andersen; M. Arnaud; Kei Asai; S. Ashikaga; Stéphane Aymerich; Philippe Bessières; F. Boland; S.C. Brignell; Sierd Bron; Keigo Bunai; J. Chapuis; L.C. Christiansen; Antoine Danchin; M. Débarbouillé; Etienne Dervyn; E. Deuerling; Kevin M. Devine; Susanne Krogh Devine; Oliver Dreesen; Jeff Errington; S. Fillinger; Simon J. Foster; Yasutaro Fujita; Alessandro Galizzi; R. Gardan; Caroline Eschevins

To estimate the minimal gene set required to sustain bacterial life in nutritious conditions, we carried out a systematic inactivation of Bacillus subtilis genes. Among ≈4,100 genes of the organism, only 192 were shown to be indispensable by this or previous work. Another 79 genes were predicted to be essential. The vast majority of essential genes were categorized in relatively few domains of cell metabolism, with about half involved in information processing, one-fifth involved in the synthesis of cell envelope and the determination of cell shape and division, and one-tenth related to cell energetics. Only 4% of essential genes encode unknown functions. Most essential genes are present throughout a wide range of Bacteria, and almost 70% can also be found in Archaea and Eucarya. However, essential genes related to cell envelope, shape, division, and respiration tend to be lost from bacteria with small genomes. Unexpectedly, most genes involved in the Embden–Meyerhof–Parnas pathway are essential. Identification of unknown and unexpected essential genes opens research avenues to better understanding of processes that sustain bacterial life.


Journal of Bacteriology | 2011

Proteins Involved in Formation of the Outermost Layer of Bacillus subtilis Spores

Daisuke Imamura; Ritsuko Kuwana; Hiromu Takamatsu; Kazuhito Watabe

To investigate the outermost structure of the Bacillus subtilis spore, we analyzed the accessibility of antibodies to proteins on spores of B. subtilis. Anti-green fluorescent protein (GFP) antibodies efficiently accessed GFP fused to CgeA or CotZ, which were previously assigned to the outermost layer termed the spore crust. However, anti-GFP antibodies did not bind to spores of strains expressing GFP fused to 14 outer coat, inner coat, or cortex proteins. Anti-CgeA antibodies bound to spores of wild-type and CgeA-GFP strains but not cgeA mutant spores. These results suggest that the spore crust covers the spore coat and is the externally exposed, outermost layer of the B. subtilis spore. We found that CotZ was essential for the spore crust to surround the spore but not for spore coat formation, indicating that CotZ plays a critical role in spore crust formation. In addition, we found that CotY-GFP was exposed on the surface of the spore, suggesting that CotY is an additional component of the spore crust. Moreover, the localization of CotY-GFP around the spore depended on CotZ, and CotY and CotZ depended on each other for spore assembly. Furthermore, a disruption of cotW affected the assembly of CotV-GFP, and a disruption of cotX affected the assembly of both CotV-GFP and CgeA-GFP. These results suggest that cgeA and genes in the cotVWXYZ cluster are involved in spore crust formation.


Journal of Bacteriology | 2010

Localization of Proteins to Different Layers and Regions of Bacillus subtilis Spore Coats

Daisuke Imamura; Ritsuko Kuwana; Hiromu Takamatsu; Kazuhito Watabe

Bacterial spores are encased in a multilayered proteinaceous shell known as the coat. In Bacillus subtilis, over 50 proteins are involved in spore coat assembly but the locations of these proteins in the spore coat are poorly understood. Here, we describe methods to estimate the positions of protein fusions to fluorescent proteins in the spore coat by using fluorescence microscopy. Our investigation suggested that CotD, CotF, CotT, GerQ, YaaH, YeeK, YmaG, YsnD, and YxeE are present in the inner coat and that CotA, CotB, CotC, and YtxO reside in the outer coat. In addition, CotZ and CgeA appeared in the outermost layer of the spore coat and were more abundant at the mother cell proximal pole of the forespore, whereas CotA and CotC were more abundant at the mother cell distal pole of the forespore. These polar localizations were observed both in sporangia prior to the release of the forespore from the mother cell and in mature spores after release. Moreover, CotB was observed at the middle of the spore as a ring- or spiral-like structure. Formation of this structure required cotG expression. Thus, we conclude not only that the spore coat is a multilayered assembly but also that it exhibits uneven spatial distribution of particular proteins.


Journal of Bacteriology | 2004

SpoIVH (ykvV), a Requisite Cortex Formation Gene, Is Expressed in Both Sporulating Compartments of Bacillus subtilis

Daisuke Imamura; Kazuo Kobayashi; Junichi Sekiguchi; Naotake Ogasawara; Michio Takeuchi; Tsutomu Sato

It is well known that the ykvU-ykvV operon is under the regulation of the sigma(E)-associated RNA polymerase (Esigma(E)). In our study, we observed that ykvV is transcribed together with the upstream ykvU gene by Esigma(E) in the mother cell and monocistronically under Esigma(G) control in the forespore. Interestingly, alternatively expressed ykvV in either the forespore or the mother cell increased the sporulation efficiency in the ykvV background. Studies show that the YkvV protein is a member of the thioredoxin superfamily and also contains a putative Sec-type secretion signal at the N terminus. We observed efficient sporulation in a mutant strain obtained by replacing the putative signal peptide of YkvV with the secretion signal sequence of SleB, indicating that the putative signal sequence is essential for spore formation. These results suggest that YkvV is capable of being transported by the putative Sec-type signal sequence into the space between the double membranes surrounding the forespore. The ability of ykvV expression in either compartment to complement is indeed intriguing and further introduces a new dimension to the genetics of B. subtilis spore formation. Furthermore, electron microscopic observation revealed a defective cortex in the ykvV disruptant. In addition, the expression levels of sigma(K)-directed genes significantly decreased despite normal sigma(G) activity in the ykvV mutant. However, immunoblotting with the anti-sigma(K) antibody showed that pro-sigma(K) was normally processed in the ykvV mutant, indicating that YkvV plays an important role in cortex formation, consistent with recent reports. We therefore propose that ykvV should be renamed spoIVH.


Journal of Biological Chemistry | 2005

Bacillolysin MA, a Novel Bacterial Metalloproteinase That Produces Angiostatin-like Fragments from Plasminogen and Activates Protease Zymogens in the Coagulation and Fibrinolysis Systems

Ritsuko Narasaki; Harushige Kuribayashi; Kosuke Shimizu; Daisuke Imamura; Tsutomu Sato; Keiji Hasumi

We isolated a novel protease that converts plasminogen to angiostatin-like fragments (BL-angiostatins) from a culture of Bacillus megaterium A9542 through a single-step chromatography on CM-cellulose. The protease, designated bacillolysin MA (BL-MA), belongs to a family of neutral metalloproteinases based on the nucleotide sequence of its gene. At an enzyme:substrate ratio of 1:540, BL-MA cleaved human plasminogen mainly at Ser441-Val442 to form BL-angiostatin and miniplasminogen with a Km of 3.0 ± 0.8 μm and a kcat of 0.70 ± 0.09 s-1. The resulting BL-angiostatins inhibited the proliferation, migration, and tube formation of vascular endothelial cells at concentrations of 1–10 μg/ml. Although BL-MA failed to activate plasminogen, it increased urokinase-catalyzed activation of plasminogen caused by production of miniplasminogen, which is highly susceptible to activation. In addition, BL-MA was active in converting prourokinase, prothrombin, coagulation factor X, and protein C to their active forms. BL-MA enhanced both the clotting of human plasma and clot dissolution in the presence of prourokinase. Thus, BL-MA affects blood coagulation and fibrinolysis systems and can be used to produce angiostatin-like plasminogen fragments and active serine proteases of human plasma.


Journal of Biological Chemistry | 2008

Evidence That the Bacillus subtilis SpoIIGA Protein Is a Novel Type of Signal-transducing Aspartic Protease

Daisuke Imamura; Ruanbao Zhou; Michael Feig; Lee Kroos

The bacterium Bacillus subtilis undergoes endospore formation in response to starvation. σ factors play a key role in spatiotemporal regulation of gene expression during development. Activation of σ factors is coordinated by signal transduction between the forespore and the mother cell. σE is produced as pro-σE, which is activated in the mother cell by cleavage in response to a signal from the forespore. We report that expression of SpoIIR, a putative signaling protein normally made in the forespore, and SpoIIGA, a putative protease, is necessary and sufficient for accurate, rapid, and abundant processing of pro-σE to σE in Escherichia coli. Modeling and mutational analyses provide evidence that SpoIIGA is a novel type of aspartic protease whose C-terminal half forms a dimer similar to the human immunodeficiency virus type 1 protease. Previous studies suggest that the N-terminal half of SpoIIGA is membrane-embedded. We found that SpoIIGA expressed in E. coli is membrane-associated and that after detergent treatment SpoIIGA was self-associated. Also, SpoIIGA interacts with SpoIIR. The results support a model in which SpoIIGA forms inactive dimers or oligomers, and interaction of SpoIIR with the N-terminal domain of SpoIIGA on one side of a membrane causes a conformational change that allows formation of active aspartic protease dimer in the C-terminal domain on the other side of the membrane, where it cleaves pro-σE.


Journal of Bacteriology | 2009

Expression of yeeK during Bacillus subtilis Sporulation and Localization of YeeK to the Inner Spore Coat using Fluorescence Microscopy

Hiromu Takamatsu; Daisuke Imamura; Ritsuko Kuwana; Kazuhito Watabe

The yeeK gene of Bacillus subtilis is predicted to encode a protein of 145 amino acids composed of 28% glycine, 23% histidine, and 12% tyrosine residues. Previous studies were unable to detect YeeK in wild-type spores; however, the 18-kDa YeeK polypeptide has been identified in yabG mutant spores. In this study, we analyze the expression and localization of YeeK to explore the relationship between YeeK and YabG. Northern hybridization analysis of wild-type RNA indicated that transcription of the yeeK gene, which was initiated 5 h after the onset of sporulation, was dependent on a SigK-containing RNA polymerase and the GerE protein. Genetic disruption of yeeK did not impair vegetative growth, development of resistant spores, or germination. Fluorescent microscopy of in-frame fusions of YeeK with green fluorescent protein (YeeK-GFP) and red fluorescent protein (YeeK-RFP) confirmed that YeeK assembles into the spore integument. CotE, SafA, and SpoVID were required for the proper localization of YeeK-GFP. Comparative analysis of YeeK-RFP and an in-frame GFP fusion of YabG indicated that YeeK colocalized with YabG in the spore coat. This is the first use of fluorescent proteins to show localization to different layers of the spore coat. Immunoblotting with anti-GFP antiserum indicated that YeeK-GFP was primarily synthesized as a 44-kDa molecule, which was then digested into a 29-kDa fragment that corresponded to the molecular size of GFP in wild-type spores. In contrast, a minimal amount of 44-kDa YeeK-GFP was digested in yabG mutant spores. Our findings demonstrate that YeeK is guided into the spore coat by CotE, SafA, and SpoVID. We conclude that YabG is directly or indirectly involved in the digestion of YeeK.


Journal of Bacteriology | 2003

Bacillus subtilis Diacylglycerol Kinase (DgkA) Enhances Efficient Sporulation

Samuel Amiteye; Kazuo Kobayashi; Daisuke Imamura; Shigeo Hosoya; Naotake Ogasawara; Tsutomu Sato

The sn-1,2-diacylglycerol kinase homologue gene, dgkA, is a sporulation gene indispensable for the maintenance of spore stability and viability in Bacillus subtilis. After 6 h of growth in resuspension medium, the endospore morphology of the dgkA mutant by standard phase-contrast microscopy was normal; however, after 9 h, the endospores appeared mostly dark by phase-contrast microscopy, suggesting a defect in the spores. Moreover, electron microscopic studies revealed an abnormal cortex structure in mutant endospores 6 h after the onset of sporulation, an indication of cortex degeneration. In addition, a significant decrease in the dipicolinic acid content of mutant spores was observed. We also found that dgkA is expressed mainly during the vegetative phase. It seems likely that either the DgkA produced during growth prepares the cell for an essential step in sporulation or the enzyme persists into sporulation and performs an essential function.


Bioscience, Biotechnology, and Biochemistry | 2011

A Novel Small Protein of Bacillus subtilis Involved in Spore Germination and Spore Coat Assembly

Takeko Kodama; Takeshi Matsubayashi; Tadayoshi Yanagihara; Hiroyuki Komoto; Katsutoshi Ara; Katsuya Ozaki; Ritsuko Kuwana; Daisuke Imamura; Hiromu Takamatsu; Kazuhito Watabe; Junichi Sekiguchi

Two small genes named sscA (previously yhzE) and orf-62, located in the prsA-yhaK intergenic region of the Bacillus subtilis genome, were transcribed by SigK and GerE in the mother cells during the later stages of sporulation. The SscA-FLAG fusion protein was produced from T5 of sporulation and incorporated into mature spores. sscA mutant spores exhibited poor germination, and Tricine–SDS–PAGE analysis showed that the coat protein profile of the mutant differed from that of the wild type. Bands corresponding to proteins at 59, 36, 5, and 3 kDa were reduced in the sscA null mutant. Western blot analysis of anti-CotB and anti-CotG antibodies showed reductions of the proteins at 59 kDa and 36 kDa in the sscA mutant spores. These proteins correspond to CotB and CotG. By immunoblot analysis of an anti-CotH antibody, we also observed that CotH was markedly reduced in the sscA mutant spores. It appears that SscA is a novel spore protein involved in the assembly of several components of the spore coat, including CotB, CotG, and CotH, and is associated with spore germination.


Journal of Biochemistry | 2011

Substrate specificity of SpoIIGA, a signal-transducing aspartic protease in Bacilli.

Daisuke Imamura; Ritsuko Kuwana; Lee Kroos; Michael Feig; Hiromu Takamatsu; Kazuhito Watabe

SpoIIGA is a novel type of membrane-associated aspartic protease that responds to a signal from the forespore by cleaving Pro-σ(E) in the mother cell during sporulation of Bacillus subtilis. Very little is known about how SpoIIGA recognizes Pro-σ(E). By co-expressing proteins in Escherichia coli, it was shown that charge reversal substitutions for acidic residues 24 and 25 of Pro-σ(E), and for basic residues 245 and 284 of SpoIIGA, impaired cleavage. These results are consistent with a model predicting possible electrostatic interactions between these residues; however, no charge reversal substitution for residue 245 or residue 284 of SpoIIGA restored cleavage of Pro-σ(E) with a charge reversal substitution for residue 24 or residue 25. Bacillus subtilis SpoIIGA cleaved Pro-σ(E) orthologs from Bacillus licheniformis and Bacillus halodurans, but not from Bacillus cereus. A triple substitution in the pro-sequence of B. cereus Pro-σ(E) allowed cleavage by B. subtilis SpoIIGA, indicating that residues distal from the cleavage site contribute to substrate specificity. Co-expression of SpoIIGA and Pro-σ(E) orthologs in different combinations suggested that B. licheniformis SpoIIGA has a relatively narrow substrate specificity as compared with B. subtilis SpoIIGA, whereas B. cereus SpoIIGA and B. halodurans SpoIIGA appear to have broader substrate specificity.

Collaboration


Dive into the Daisuke Imamura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tsutomu Sato

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar

Kazuo Kobayashi

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naotake Ogasawara

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Lee Kroos

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Michael Feig

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge