Daisuke Kajiya
Hiroshima University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daisuke Kajiya.
Journal of Physical Chemistry B | 2009
Daisuke Kajiya; Ken-ichi Saitow
Vibrational Raman spectra of the C horizontal lineC stretching modes of cis- and trans-1,2-dichloroethylene (C(2)H(2)Cl(2)) were measured in supercritical carbon dioxide (CO(2)). The spectra were collected at a fixed solute mole fraction by varying the fluid density by a factor of 20. As the density increased, the peak frequencies of the C horizontal lineC stretching modes shifted toward the low-energy side at isotherms of reduced temperature, T(r) = T/T(c) = 1.02, 1.06, and 1.20. By analyzing these density dependences using the perturbed hard-sphere theory, we decomposed the shifts into attractive and repulsive components. The repulsive shifts of cis-C(2)H(2)Cl(2) were almost equivalent to those of trans-C(2)H(2)Cl(2). However, the attractive shifts of nonpolar trans-C(2)H(2)Cl(2) were significantly greater than those of polar cis-C(2)H(2)Cl(2) at all densities and temperatures. To evaluate the difference in the isomers, we calculated the attractive shifts of the C horizontal lineC stretching modes of each isomer, composing of dispersion, dipole-induced-dipole, and dipole-quadrupole interactions between solute C(2)H(2)Cl(2) and solvent CO(2) molecules. These three interactions were quantified by considering molecular configurations and orientations, and solvation structures around the isomers were elucidated by 3D schematic diagrams. As a result, it was shown that the anisotropic solvation structure around trans-C(2)H(2)Cl(2) was responsible for the larger attractive shifts in the supercritical CO(2). The difference of solvation structures between the isomers was significant at T(r) = 1.02 but became minor as the temperature increased to T(r) = 1.20.
Journal of Physical Chemistry B | 2008
Daisuke Kajiya; Yutaka Mouri; Ken-ichi Saitow
Vibrational Raman spectra of CC stretching modes of both cis- and trans-1,2-dichloroethylene (C2H2Cl2) were measured as a function of density in supercritical carbon dioxide (CO2). Measurements were performed with solute mole fraction of 0.01 at an isotherm of T r = T/ T c = 1.02. As the density of CO2 increased, peak frequencies of the CC stretching modes shifted toward the low energy side. By analyzing these density dependences using perturbed hard-sphere theory, we decomposed the shifted amounts into attractive and repulsive components. The amounts of repulsive shifts were almost equivalent, whereas those of the attractive shifts of trans-C2H2Cl 2 were larger than those of cis-C2H2Cl2 at all densities. This means that the nonpolar solute, trans-C2H2Cl2, shows stronger solute-solvent interactions than those of the polar solute cis-C2H2Cl2. The difference of attractive interactions between these isomers is the greatest at a density where local density enhancement of supercritical CO2 reaches the maximum.
Journal of Physical Chemistry B | 2010
Daisuke Kajiya; Ken-ichi Saitow
Vibrational Raman spectra of the C=C stretching modes of cis- and trans-1,2-dichloroethylene (C(2)H(2)Cl(2)) were measured in supercritical Xe, SF(6), CO(2), and CHF(3). The spectra were collected over a wide range of densities of supercritical fluids at a fixed solute mole fraction and isotherm of T(r) = T/T(c) = 1.02. In all fluids, as the density increased, the peak frequencies of the C=C stretching modes shifted toward the low-energy side. By analyzing these density dependencies using the perturbed hard-sphere theory, the shifted amounts were characterized into attractive and repulsive components. The attractive shifts of both isomers were almost equivalent in supercritical CHF(3), CO(2), and SF(6), whereas they were significantly larger in supercritical Xe. The attractive shifts obtained experimentally were compared with the ones calculated on the basis of dispersion, dipole-dipole, dipole-induced-dipole, and dipole-quadrupole interactions between solute and solvent molecules. The experimental attractive shifts in supercritical Xe were 2-3 times greater than the calculated shifts. The large attractive shifts were ascribed to both an anisotropic solvation structure and to a strong interaction (charge transfer) between Xe and C(2)H(2)Cl(2) molecules.
Journal of Chemical Physics | 2013
Daisuke Kajiya; Ken-ichi Saitow
Carbonyl compounds are solutes that are highly soluble in supercritical CO2 (scCO2). Their solubility governs the efficiency of chemical reactions, and is significantly increased by changing a chromophore. To effectively use scCO2 as solvent, it is crucial to understand the high solubility of carbonyl compounds, the solvation structure, and the solute-solvent intermolecular interactions. We report Raman spectroscopic data, for three prototypical ketones dissolved in scCO2, and four theoretical analyses. The vibrational Raman spectra of the C=O stretching modes of ketones (acetone, acetophenone, and benzophenone) were measured in scCO2 along the reduced temperature Tr = T∕Tc = 1.02 isotherm as a function of the reduced density ρr = ρ∕ρc in the range 0.05-1.5. The peak frequencies of the C=O stretching modes shifted toward lower energies as the fluid density increased. The density dependence was analyzed by using perturbed hard-sphere theory, and the shift was decomposed into attractive and repulsive energy components. The attractive energy between the ketones and CO2 was up to nine times higher than the repulsive energy, and its magnitude increased in the following order: acetone < acetophenone < benzophenone. The Mulliken charges of the three solutes and CO2 molecules obtained by using quantum chemistry calculations described the order of the magnitude of the attractive energy and optimized the relative configuration between each solute and CO2. According to theoretical calculations for the dispersion energy, the dipole-induced-dipole interaction energy, and the frequency shift due to their interactions, the experimentally determined attractive energy differences in the three solutes were attributed to the dispersion energies that depended on a chromophore attached to the carbonyl groups. It was found that the major intermolecular interaction with the attractive shift varied from dipole-induced dipole to dispersion depending on the chromophore in the ketones in scCO2. As the common conclusion for the Raman spectral measurements and the four theoretical calculations, solute polarizability, modified by the chromophore, was at the core of the solute-solvent interactions of the ketones in scCO2.
Journal of Physical Chemistry B | 2010
Daisuke Kajiya; Ken-ichi Saitow
Vibrational Raman spectra of the C=C stretching modes of cis-stilbene and cis-1,2-dichloroethylene (C(2)H(2)Cl(2)) were measured in supercritical CO(2) in a density range of 0.08 < ρ(r) = ρ/ρ(c) < 1.5 at an isotherm of T(r) = T/T(c) = 1.02. As the fluid density increased, the peak frequencies of cis-stilbene and cis-C(2)H(2)Cl(2) shifted toward the low-energy side. The shifted frequencies of cis-stilbene were consistently greater than those of cis-C(2)H(2)Cl(2) in all density regions, by a factor of 4. By analyzing these density dependencies using the perturbed hard-sphere theory, the shifted frequencies were decomposed into attractive and repulsive components. By quantifying these components as a function of fluid density, we investigated how each solute is solvated in supercritical CO(2). The results indicate that the attractive energy between cis-stilbene and CO(2) is twice that between cis-C(2)H(2)Cl(2) and CO(2). A local density augmentation around the solute molecule was not observed in the cis-C(2)H(2)Cl(2)/CO(2) system, but it was observed in the cis-stilbene/CO(2) system because of site-selective solvation around the phenyl group of cis-stilbene. To the best of our knowledge, this is the first time that the site-selective solvation of a solute molecule has been observed using Raman spectral measurements of a solution system. Based on theoretical calculations and Raman spectral measurements of cis-stilbene in the supercritical fluid of dipolar CHF(3), it is concluded that a driving force for site-selective solvation is the dispersion force.
Journal of Physical Chemistry B | 2016
Daisuke Kajiya; Masayoshi Imanishi; Ken-ichi Saitow
Vibrational Raman spectra for the C═O stretching modes of three esters with different functional groups (methyl, a single phenyl, and two phenyl groups) were measured in supercritical carbon dioxide (scCO2). The results were compared with Raman spectra for three ketones involving the same functional groups, measured at the same thermodynamic states in scCO2. The peak frequencies of the Raman spectra of these six solute molecules were analyzed by decomposition into the attractive and repulsive energy components, based on the perturbed hard-sphere theory. For all solute molecules, the attractive energy is greater than the repulsive energy. In particular, a significant difference in the attractive energies of the ester-CO2 and ketone-CO2 systems was observed when the methyl group is attached to the ester or ketone. This difference was significantly reduced in the solute systems with a single phenyl group and was completely absent in those with two phenyl groups. The optimized structures among the solutes and CO2 molecules based on quantum chemical calculations indicate that greater attractive energy is obtained for a system where the oxygen atom of the ester is solvated by CO2 molecules.
AIP Advances | 2015
Daisuke Kajiya; Tomoyuki Koganezawa; Ken-ichi Saitow
The hole mobility of poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylene vinylene] (MEH-PPV) film was measured using the time-of-flight method. The hole mobility was enhanced 4-fold after annealing at around the glass transition temperature (Tg). Optical, atomic force, and Kelvin force microscopies, and grazing-incidence X-ray diffraction measurements indicate the enhancement can be attributed to a homogeneous film structure, a homogeneous Fermi level energy, and a face-on oriented structure, all of which were established by annealing at Tg.
Journal of Chemical Physics | 2011
Daisuke Kajiya; Ken-ichi Saitow
Vibrational Raman spectra of C=C stretching modes of ethylene derivates (cis-C(2)H(2)Cl(2), cis-stilbene, and trans-stilbene) were measured in supercritical fluids along an isotherm as functions of their densities. The substitution effect of the Raman shift is so significant that a difference among three solutes can be 20 times and is observed similarly in dipolar (CHF(3)) and non-dipolar (CO(2)) fluids. In particular, the shifts of trans-stilbene were enormously large among all systems for studies of vibrational spectroscopies of supercritical fluids and were equivalent to those of typical hydrogen-bonded fluids. Such large shifts arising from the significant attractive energy between solute and solvent molecules were attributed to a site-selective solvation around a phenyl group, which was driven by a dispersion force in the absence of steric hindrance. We found that the absence of steric hindrance causes the significant local density augmentation. To the best of our knowledge, Raman experiments and their theoretical analysis are the first ones quantifying how the difference of steric hindrance produces solvation structures in solution as well as supercritical solutions.
Scientific Reports | 2017
Masayoshi Imanishi; Daisuke Kajiya; Tomoyuki Koganezawa; Ken-ichi Saitow
The realization of room-temperature processes is an important factor in the development of flexible electronic devices composed of organic materials. In addition, a simple and cost-effective process is essential to produce stable working devices and to enhance the performance of a smart material for flexible, wearable, or stretchable-skin devices. Here, we present a soft friction transfer method for producing aligned polymer films; a glass substrate was mechanically brushed with a velvet fabric and poly(3-hexylthiophene) (P3HT) solution was then spin-coated on the substrate. A P3HT film with a uniaxial orientation was obtained in air at room temperature. The orientation factor was 17 times higher than that of a film prepared using a conventional friction transfer technique at a high temperature of 120 °C. In addition, an oriented film with a thickness of 40 nm was easily picked up and transferred to another substrate. The mechanism for orientation of the film was investigated using six experimental methods and theoretical calculation, and was thereby attributed to a chemical process, i.e., cellulose molecules attach to the substrate and act as a template for molecular alignment.
Journal of Physical Chemistry C | 2012
Shaoyu Wei; Tomoharu Yamamura; Daisuke Kajiya; Ken-ichi Saitow