Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daisuke Matsumaru is active.

Publication


Featured researches published by Daisuke Matsumaru.


Development | 2009

Dosage-dependent hedgehog signals integrated with Wnt/β-catenin signaling regulate external genitalia formation as an appendicular program

Shinichi Miyagawa; Anne Moon; Ryuma Haraguchi; Chie Inoue; Masayo Harada; Chiaki Nakahara; Kentaro Suzuki; Daisuke Matsumaru; Takehito Kaneko; Isao Matsuo; Lei Yang; Makoto M. Taketo; Taisen Iguchi; Sylvia M. Evans; Gen Yamada

Embryonic appendicular structures, such as the limb buds and the developing external genitalia, are suitable models with which to analyze the reciprocal interactions of growth factors in the regulation of outgrowth. Although several studies have evaluated the individual functions of different growth factors in appendicular growth, the coordinated function and integration of input from multiple signaling cascades is poorly understood. We demonstrate that a novel signaling cascade governs formation of the embryonic external genitalia [genital tubercle (GT)]. We show that the dosage of Shh signal is tightly associated with subsequent levels of Wnt/β-catenin activity and the extent of external genitalia outgrowth. In Shh-null mouse embryos, both expression of Wnt ligands and Wnt/β-catenin signaling activity are downregulated. β-catenin gain-of-function mutation rescues defective GT outgrowth and Fgf8 expression in Shh-null embryos. These data indicate that Wnt/β-catenin signaling in the distal urethral epithelium acts downstream of Shh signaling during GT outgrowth. The current data also suggest that Wnt/β-catenin regulates Fgf8 expression via Lef/Tcf binding sites in a 3′ conserved enhancer. Fgf8 induces phosphorylation of Erk1/2 and cell proliferation in the GT mesenchyme in vitro, yet Fgf4/8 compound-mutant phenotypes indicate dispensable functions of Fgf4/8 and the possibility of redundancy among multiple Fgfs in GT development. Our results provide new insights into the integration of growth factor signaling in the appendicular developmental programs that regulate external genitalia development.


Endocrinology | 2010

Progenitor cell expansion and organ size of mouse adrenal is regulated by sonic hedgehog.

Chen-Che Jeff Huang; Shinichi Miyagawa; Daisuke Matsumaru; Keith L. Parker; Humphrey Hung-Chang Yao

The adrenal capsule is postulated to harbor stem/progenitor cells, the progenies of which contribute to the growth of adrenocortex. We discovered that cells in the adrenal capsule are positive for Ptch1 and Gli1, genes indicative of responsiveness to the stimulation of Hedgehog (Hh) ligands. On the other hand, Sonic hedgehog (Shh), one of the mammalian Hh ligands, is expressed in the adrenocortex underneath the adrenal capsule, possibly acting upon the Hh-Responsive capsule. To investigate the functional significance of Shh in adrenal growth, we ablated Shh in an adrenocortex-specific manner using the Steroidogenic factor 1-Cre mouse. Loss of Shh in the adrenocortex led to reduced proliferation of capsular cells and a 50-75% reduction in adrenocortex thickness and adrenal size. The remaining adrenocortex underwent proper zonation and was able to synthesize steroids, indicating that Shh is dispensable for differentiation of adrenocortex. When these animals reached adulthood, their adrenocortex did not undergo compensatory growth in response to a high level of plasma ACTH, and the size of the adrenal remained significantly smaller than the control adrenal. Using a genetic lineage-tracing model, we further demonstrated that the Hh-responding cells in the adrenal capsule migrated centripetally into the adrenocortex. Our results not only provide the genetic evidence to support that the adrenal capsule contributes to the growth of adrenocortex in both fetal and adult life but also identify a novel role of Shh in this process.


Developmental Biology | 2009

Mouse Shh is required for prechordal plate maintenance during brain and craniofacial morphogenesis.

Kazushi Aoto; Yayoi Shikata; Hajime Imai; Daisuke Matsumaru; Tomoyuki Tokunaga; Seiji Shioda; Gen Yamada; Jun Motoyama

In humans, holoprosencephaly (HPE) is a common birth defect characterized by the absence of midline cells from brain, facial, and oral structures. To understand the pathoetiology of HPE, we investigated the involvement of mammalian prechordal plate (PrCP) cells in HPE pathogenesis and the requirement of the secreted protein sonic hedgehog (Shh) in PrCP development. We show using rat PrCP lesion experiments and DiI labeling that PrCP cells are essential for midline development of the forebrain, foregut endoderm, and ventral cranial mesoderm in mammals. We demonstrate that PrCP cells do not develop into ventral cranial mesoderm in Shh(-/-) embryos. Using Shh(-/-) and chimeric embryos we show that Shh signal is required for the maintenance of PrCP cells in a non-cell autonomous manner. In addition, the hedgehog (HH)-responding cells that normally appear during PrCP development to contribute to midline tissues, do not develop in the absence of Shh signaling. This suggests that Shh protein secreted from PrCP cells induces the differentiation of HH-responding cells into midline cells. In the present study, we show that the maintenance of a viable population of PrCP cells by Shh signal is an essential process in development of the midline of the brain and craniofacial structures. These findings provide new insight into the mechanism underlying HPE pathoetiology during dynamic brain and craniofacial morphogenesis.


Endocrinology | 2011

The Role of Sonic Hedgehog-Gli2 Pathway in the Masculinization of External Genitalia

Shinichi Miyagawa; Daisuke Matsumaru; Aki Murashima; Akiko Omori; Yoshihiko Satoh; Ryuma Haraguchi; Jun Motoyama; Taisen Iguchi; Naomi Nakagata; Chi Chung Hui; Gen Yamada

During embryogenesis, sexually dimorphic organogenesis is achieved by hormones produced in the gonad. The external genitalia develop from a single primordium, the genital tubercle, and their masculinization processes depend on the androgen signaling. In addition to such hormonal signaling, the involvement of nongonadal and locally produced masculinization factors has been unclear. To elucidate the mechanisms of the sexually dimorphic development of the external genitalia, series of conditional mutant mouse analyses were performed using several mutant alleles, particularly focusing on the role of hedgehog signaling pathway in this manuscript. We demonstrate that hedgehog pathway is indispensable for the establishment of male external genitalia characteristics. Sonic hedgehog is expressed in the urethral plate epithelium, and its signal is mediated through glioblastoma 2 (Gli2) in the mesenchyme. The expression level of the sexually dimorphic genes is decreased in the glioblastoma 2 mutant embryos, suggesting that hedgehog signal is likely to facilitate the masculinization processes by affecting the androgen responsiveness. In addition, a conditional mutation of Sonic hedgehog at the sexual differentiation stage leads to abnormal male external genitalia development. The current study identified hedgehog signaling pathway as a key factor not only for initial development but also for sexually dimorphic development of the external genitalia in coordination with androgen signaling.


Development Growth & Differentiation | 2008

Gene transduction by sonoporation

Sho Ohta; Kentaro Suzuki; Yukiko Ogino; Shinichi Miyagawa; Aki Murashima; Daisuke Matsumaru; Gen Yamada

Gene transduction technologies are essential tools for understanding of gene functions or gene cascades underlying embryogenesis. In this review, we introduce a gene transduction method using microbubble and ultrasound (hereafter referred to as sonoporation). Sonoporation is carried out with relatively simple procedures and easily transduces genes into mesenchymal cells without significant damage to target tissues. Therefore, sonoporation is effective for gene transduction to study the molecular mechanisms of morphogenesis.


Developmental Biology | 2011

Ptch1-mediated dosage-dependent action of Shh signaling regulates neural progenitor development at late gestational stages

Yayoi Shikata; Toshiaki Okada; Mitsuhiro Hashimoto; Tammy Ellis; Daisuke Matsumaru; Toshihiko Shiroishi; Masaharu Ogawa; Brandon J. Wainwright; Jun Motoyama

Sonic hedgehog (Shh) signaling regulates cell differentiation and proliferation during brain development. However, the role of Shh in neurogenesis during late gestation (embryonic day 13.5-18.5) remains unclear. Herein, we used a genetic approach and in utero electroporation to investigate the role of mouse Shh and patched homolog 1 (Ptch1), the putative receptor for Shh. Proliferating cortical intermediate (basal) progenitor cells (IPCs) were severely reduced in Shh mutant mice, suggesting that endogenous Shh signaling could play an essential role in cortical IPC development. During cortical neurogenesis, strong upregulation of Shh signaling enhanced the transition from ventricular zone (VZ) progenitors to ventralized IPCs, while low levels of signaling enhanced the generation and proliferation of cortical IPCs in the subventricular zone. The effects of Shh upregulation in this study were consistent with a phenotype of conditional loss of function of Ptch1, and the phenotype of a hypomorphic allele of Ptch1, respectively. These data indicated that endogenous Ptch1 mediates the broad effects of Shh on the transition from VZ progenitors to IPCs and activation of proliferation of the IPCs in the cortex during late gestational stages.


PLOS ONE | 2012

The Hedgehog Signal Induced Modulation of Bone Morphogenetic Protein Signaling: An Essential Signaling Relay for Urinary Tract Morphogenesis

Ryuma Haraguchi; Daisuke Matsumaru; Naomi Nakagata; Shinichi Miyagawa; Kentaro Suzuki; Sohei Kitazawa; Gen Yamada

Background Congenital diseases of the urinary tract are frequently observed in infants. Such diseases present a number of developmental anomalies such as hydroureter and hydronephrosis. Although some genetically-modified mouse models of growth factor signaling genes reproduce urinary phenotypes, the pathogenic mechanisms remain obscure. Previous studies suggest that a portion of the cells in the external genitalia and bladder are derived from peri-cloacal mesenchymal cells that receive Hedgehog (Hh) signaling in the early developmental stages. We hypothesized that defects in such progenitor cells, which give rise to urinary tract tissues, may be a cause of such diseases. Methodology/Principal Findings To elucidate the pathogenic mechanisms of upper urinary tract malformations, we analyzed a series of Sonic hedgehog (Shh) deficient mice. Shh−/− displayed hydroureter and hydronephrosis phenotypes and reduced expression of several developmental markers. In addition, we suggested that Shh modulation at an early embryonic stage is responsible for such phenotypes by analyzing the Shh conditional mutants. Tissue contribution assays of Hh-responsive cells revealed that peri-cloacal mesenchymal cells, which received Hh signal secreted from cloacal epithelium, could contribute to the ureteral mesenchyme. Gain- and loss-of-functional mutants for Hh signaling revealed a correlation between Hh signaling and Bone morphogenetic protein (Bmp) signaling. Finally, a conditional ablation of Bmp receptor type IA (BmprIA) gene was examined in Hh-responsive cell lineages. This system thus made it possible to analyze the primary functions of the growth factor signaling relay. The defective Hh-to-Bmp signaling relay resulted in severe urinary tract phenotypes with a decrease in the number of Hh-responsive cells. Conclusions/Significance This study identified the essential embryonic stages for the pathogenesis of urinary tract phenotypes. These results suggested that Hh-responsive mesenchymal Bmp signaling maintains the population of peri-cloacal mesenchyme cells, which is essential for the development of the ureter and the upper urinary tract.


PLOS ONE | 2011

Genetic analysis of Hedgehog signaling in ventral body wall development and the onset of omphalocele formation.

Daisuke Matsumaru; Ryuma Haraguchi; Shinichi Miyagawa; Jun Motoyama; Naomi Nakagata; Frits Meijlink; Gen Yamada

Background An omphalocele is one of the major ventral body wall malformations and is characterized by abnormally herniated viscera from the body trunk. It has been frequently found to be associated with other structural malformations, such as genitourinary malformations and digit abnormalities. In spite of its clinical importance, the etiology of omphalocele formation is still controversial. Hedgehog (Hh) signaling is one of the essential growth factor signaling pathways involved in the formation of the limbs and urogenital system. However, the relationship between Hh signaling and ventral body wall formation remains unclear. Methodology/Principal Findings To gain insight into the roles of Hh signaling in ventral body wall formation and its malformation, we analyzed phenotypes of mouse mutants of Sonic hedgehog (Shh), GLI-Kruppel family member 3 (Gli3) and Aristaless-like homeobox 4 (Alx4). Introduction of additional Alx4Lst mutations into the Gli3Xt/Xt background resulted in various degrees of severe omphalocele and pubic diastasis. In addition, loss of a single Shh allele restored the omphalocele and pubic symphysis of Gli3Xt/+; Alx4Lst/Lst embryos. We also observed ectopic Hh activity in the ventral body wall region of Gli3Xt/Xt embryos. Moreover, tamoxifen-inducible gain-of-function experiments to induce ectopic Hh signaling revealed Hh signal dose-dependent formation of omphaloceles. Conclusions/Significance We suggest that one of the possible causes of omphalocele and pubic diastasis is ectopically-induced Hh signaling. To our knowledge, this would be the first demonstration of the involvement of Hh signaling in ventral body wall malformation and the genetic rescue of omphalocele phenotypes.


Congenital Anomalies | 2008

Gene expression analyses on embryonic external genitalia: Identification of regulatory genes possibly involved in masculinization processes

Hisayo Nishida; Shinichi Miyagawa; Daisuke Matsumaru; Yoshihiro Wada; Yoshihiko Satoh; Yukiko Ogino; Shinji Fukuda; Taisen Iguchi; Gen Yamada

ABSTRACT  Androgen plays a crucial role in initiating and maintaining the expression of male sexual characteristics in mammals. In humans and mice, any defects along the pathway of androgen functions result in congenital urogenital abnormalities. The genital tubercle (GT), an anlage of the external genitalia, differentiates into a penis in males and a clitoris in females. Although masculinization of the external genitalia is androgen‐dependent, the molecular pathway of its potential downstream genes is largely unclear. To identify the genes involved in mouse GT masculinization, we performed gene expression analyses, such as real‐time quantitative polymerase chain reaction and section in situ hybridization analysis. From our studies we have identified candidate genes, Cyp1b1, Fkbp51 and MafB as potential androgen targets during mouse GT masculinization.


Cell Death & Differentiation | 2014

Dysregulation of Wnt inhibitory factor 1 (Wif1) expression resulted in aberrant Wnt-β-catenin signaling and cell death of the cloaca endoderm, and anorectal malformations

R C-L Ng; Daisuke Matsumaru; A S-H Ho; Mm Garcia-Barcelo; Z-W Yuan; D Smith; L Kodjabachian; P K-H Tam; Gen Yamada; V C-H Lui

In mammalian urorectal development, the urorectal septum (urs) descends from the ventral body wall to the cloaca membrane (cm) to partition the cloaca into urogenital sinus and rectum. Defective urs growth results in human congenital anorectal malformations (ARMs), and their pathogenic mechanisms are unclear. Recent studies only focused on the importance of urs mesenchyme proliferation, which is induced by endoderm-derived Sonic Hedgehog (Shh). Here, we showed that the programmed cell death of the apical urs and proximal cm endoderm is particularly crucial for the growth of urs during septation. The apoptotic endoderm was closely associated with the tempo-spatial expression of Wnt inhibitory factor 1 (Wif1), which is an inhibitor of Wnt-β-catenin signaling. In Wif1lacZ/lacZ mutant mice and cultured urorectum with exogenous Wif1, cloaca septation was defective with undescended urs and hypospadias-like phenotypes, and such septation defects were also observed in Shh−/− mutants and in endodermal β-catenin gain-of-function (GOF) mutants. In addition, Wif1 and Shh were expressed in a complementary manner in the cloaca endoderm, and Wif1 was ectopically expressed in the urs and cm associated with excessive endodermal apoptosis and septation defects in Shh−/− mutants. Furthermore, apoptotic cells were markedly reduced in the endodermal β-catenin GOF mutant embryos, which counteracted the inhibitory effects of Wif1. Taken altogether, these data suggest that regulated expression of Wif1 is critical for the growth of the urs during cloaca septation. Hence, Wif1 governs cell apoptosis of urs endoderm by repressing β-catenin signal, which may facilitate the protrusion of the underlying proliferating mesenchymal cells towards the cm for cloaca septation. Dysregulation of this endodermal Shh-Wif1-β-catenin signaling axis contributes to ARM pathogenesis.

Collaboration


Dive into the Daisuke Matsumaru's collaboration.

Top Co-Authors

Avatar

Gen Yamada

Wakayama Medical University

View shared research outputs
Top Co-Authors

Avatar

Kentaro Suzuki

Wakayama Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aki Murashima

Iwate Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shinichi Miyagawa

National Institute for Basic Biology

View shared research outputs
Top Co-Authors

Avatar

Shoko Matsushita

Wakayama Medical University

View shared research outputs
Top Co-Authors

Avatar

Taisen Iguchi

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge