Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daisuke Oikawa is active.

Publication


Featured researches published by Daisuke Oikawa.


Journal of Cell Biology | 2004

A role for BiP as an adjustor for the endoplasmic reticulum stress-sensing protein Ire1

Yukio Kimata; Daisuke Oikawa; Yusuke Shimizu; Yuki Ishiwata-Kimata; Kenji Kohno

In the unfolded protein response, the type I transmembrane protein Ire1 transmits an endoplasmic reticulum (ER) stress signal to the cytoplasm. We previously reported that under nonstressed conditions, the ER chaperone BiP binds and represses Ire1. It is still unclear how this event contributes to the overall regulation of Ire1. The present Ire1 mutation study shows that the luminal domain possesses two subregions that seem indispensable for activity. The BiP-binding site was assigned not to these subregions, but to a region neighboring the transmembrane domain. Phenotypic comparison of several Ire1 mutants carrying deletions in the indispensable subregions suggests these subregions are responsible for multiple events that are prerequisites for activation of the overall Ire1 proteins. Unexpectedly, deletion of the BiP-binding site rendered Ire1 unaltered in ER stress inducibility, but hypersensitive to ethanol and high temperature. We conclude that in the ER stress-sensory system BiP is not the principal determinant of Ire1 activity, but an adjustor for sensitivity to various stresses.


Journal of Cell Biology | 2007

Two regulatory steps of ER-stress sensor Ire1 involving its cluster formation and interaction with unfolded proteins

Yukio Kimata; Yuki Ishiwata-Kimata; Tatsuhiko Ito; Aiko Hirata; Tomohide Suzuki; Daisuke Oikawa; Masato Takeuchi; Kenji Kohno

Chaperone protein BiP binds to Ire1 and dissociates in response to endoplasmic reticulum (ER) stress. However, it remains unclear how the signal transducer Ire1 senses ER stress and is subsequently activated. The crystal structure of the core stress-sensing region (CSSR) of yeast Ire1 luminal domain led to the controversial suggestion that the molecule can bind to unfolded proteins. We demonstrate that, upon ER stress, Ire1 clusters and actually interacts with unfolded proteins. Ire1 mutations that affect these phenomena reveal that Ire1 is activated via two steps, both of which are ER stress regulated, albeit in different ways. In the first step, BiP dissociation from Ire1 leads to its cluster formation. In the second step, direct interaction of unfolded proteins with the CSSR orients the cytosolic effector domains of clustered Ire1 molecules.


Experimental Cell Research | 2009

Activation of mammalian IRE1α upon ER stress depends on dissociation of BiP rather than on direct interaction with unfolded proteins

Daisuke Oikawa; Yukio Kimata; Kenji Kohno; Takao Iwawaki

IRE1, an ER-localized transmembrane protein, plays a central role in the unfolded protein response. Upon ER stress, IRE1 senses the accumulation of unfolded proteins in the ER, and transfers signal from the ER to the cytosol. Recently, it was reported that the luminal domain of yeast Ire1 senses the unfolded proteins via a two-step mechanism, namely dissociation of BiP and direct interaction with unfolded proteins. However, it has been unclear whether a similar mechanism is applicable to mammalian IRE1alpha. To address this point, we analyzed luminal-domain mutants of mammalian IRE1alpha in cells, and evaluated the anti-aggregation activity of the luminal fragment of IRE1alpha in vitro. We generated a mutant that has low affinity for BiP, and this mutant was significantly activated even under normal conditions. Moreover, the luminal fragments of mammalian IRE1alpha did not exhibit anti-aggregation activity. These results suggest that in contrast to yeast Ire1, the regulation of mammalian IRE1alpha strongly depends on the dissociation of BiP.


Nucleic Acids Research | 2010

Identification of a consensus element recognized and cleaved by IRE1α

Daisuke Oikawa; Mio Tokuda; Akira Hosoda; Takao Iwawaki

IRE1α is an endoplasmic reticulum (ER)-located transmembrane RNase that plays a central role in the ER stress response. Upon ER stress, IRE1α is activated and cleaves specific exon–intron sites in the mRNA encoding the transcription factor X-box-binding protein 1 (XBP1). In addition, previous studies allow us to predict that IRE1α targets several RNAs other than the XBP1. In fact, we have identified CD59 mRNA as a cleavage target of IRE1α. However, it is not yet clear how IRE1α recognizes and cleaves target RNAs. To address this question, we devised a unique method that combines an in vitro cleavage assay with an exon microarray analysis, and performed genome-wide screening for IRE1α cleavage targets. We identified 13 novel mRNAs as candidate IRE1α cleavage targets. Moreover, an analysis of the novel cleavage sites revealed a consensus sequence (CUGCAG) which, when accompanied by a stem-loop structure, is essential for IRE1α-mediated cleavage. The sequence and structure were also conserved in the known IRE1α cleavage targets, CD59 and XBP1. These findings provide the important clue to understanding the molecular mechanisms by which IRE1α recognizes and cleaves target RNAs.


Blood Cancer Journal | 2012

Identification of Toyocamycin, an agent cytotoxic for multiple myeloma cells, as a potent inhibitor of ER stress-induced XBP1 mRNA splicing

Masaki Ri; Etsu Tashiro; Daisuke Oikawa; Satoko Shinjo; Mio Tokuda; Yumi Yokouchi; Tomoko Narita; Ayako Masaki; Asahi Ito; Jianming (Diane) Ding; Shigeru Kusumoto; Takashi Ishida; Hirokazu Komatsu; Y Shiotsu; Ryuzo Ueda; Takao Iwawaki; Masaya Imoto; Shinsuke Iida

The IRE1α-XBP1 pathway, a key component of the endoplasmic reticulum (ER) stress response, is considered to be a critical regulator for survival of multiple myeloma (MM) cells. Therefore, the availability of small-molecule inhibitors targeting this pathway would offer a new chemotherapeutic strategy for MM. Here, we screened small-molecule inhibitors of ER stress-induced XBP1 activation, and identified toyocamycin from a culture broth of an Actinomycete strain. Toyocamycin was shown to suppress thapsigargin-, tunicamycin- and 2-deoxyglucose-induced XBP1 mRNA splicing in HeLa cells without affecting activating transcription factor 6 (ATF6) and PKR-like ER kinase (PERK) activation. Furthermore, although toyocamycin was unable to inhibit IRE1α phosphorylation, it prevented IRE1α-induced XBP1 mRNA cleavage in vitro. Thus, toyocamycin is an inhibitor of IRE1α-induced XBP1 mRNA cleavage. Toyocamycin inhibited not only ER stress-induced but also constitutive activation of XBP1 expression in MM lines as well as primary samples from patients. It showed synergistic effects with bortezomib, and induced apoptosis of MM cells including bortezomib-resistant cells at nanomolar levels in a dose-dependent manner. It also inhibited growth of xenografts in an in vivo model of human MM. Taken together, our results suggest toyocamycin as a lead compound for developing anti-MM therapy and XBP1 as an appropriate molecular target for anti-MM therapy.


Scientific Reports | 2012

A transgenic mouse model for monitoring oxidative stress

Daisuke Oikawa; Ryoko Akai; Mio Tokuda; Takao Iwawaki

Oxidative stress conditions enhance the production of reactive oxygen species resulting from a variety of stimuli, and are associated with various human diseases, including neurodegenerative disorders, inflammation, and various cancers. Though such associations have been closely studied using animal models, there has been no in vivo system for monitoring oxidative stress. We have developed an oxidative stress indicator that is dually regulated by induction at the transcriptional level, and by protein stabilisation at the post-translational level in Keap1-Nrf2 pathway. In vitro, our indicator elicited an intense and specific signal to oxidative stress among various agents, in a Keap1-Nrf2-dependent manner. Moreover, the transgenic animal expressing the indicator exhibited significant signals upon oxidative stress. These results indicate the usefulness of our system as an indicator of oxidative stress both in vitro and in vivo.


Genes to Cells | 2013

Membrane lipid saturation activates IRE1α without inducing clustering.

Yuto Kitai; Hiroyuki Ariyama; Nozomu Kono; Daisuke Oikawa; Takao Iwawaki; Hiroyuki Arai

The unfolded protein response (UPR) is an adaptive stress response that responds to the accumulation of unfolded proteins in the lumen of the endoplasmic reticulum (ER) and that adjusts the protein‐folding capacity to the needs of the cell. Perturbation of cellular lipids also activates the UPR. Lipid‐induced UPR has attracted much attention because it is associated with the pathology of some metabolic diseases. However, how the lipid‐induced UPR is activated remains unclear. We previously showed that palmitic acid treatment or knockdown of stearoyl‐CoA desaturase in HeLa cells promotes membrane lipid saturation and activates the UPR. In this study, we compared UPR activation by membrane lipid saturation with UPR activation by conventional ER stressors that cause the accumulation of unfolded proteins such as tunicamycin and thapsigargin. Membrane lipid saturation induced autophosphorylation of inositol‐requiring 1α (IRE1α) and protein kinase RNA‐like ER kinase, but not the conversion of activating transcription factor‐6α to the active form. A conventional ER stressor induced clustering of fluorescently tagged IRE1α fusion protein, but palmitic acid treatment did not, suggesting that IRE1α was activated without large cluster formation by membrane lipid saturation. Together, these results suggest membrane lipid saturation, and unfolded proteins activate the UPR through different mechanisms.


PLOS ONE | 2012

Direct Association of Unfolded Proteins with Mammalian ER Stress Sensor, IRE1β

Daisuke Oikawa; Akira Kitamura; Masataka Kinjo; Takao Iwawaki

IRE1, an ER-localized transmembrane protein, plays a central role in the unfolded protein response (UPR). IRE1 senses the accumulation of unfolded proteins in its luminal domain and transmits a signal to the cytosolic side through its kinase and RNase domains. Although the downstream pathways mediated by two mammalian IRE1s, IRE1α and IRE1β, are well documented, their luminal events have not been fully elucidated. In particular, there have been no reports on how IRE1β senses the unfolded proteins. In this study, we performed a comparative analysis to clarify the luminal event mediated by the mammalian IRE1s. Confocal fluorescent microscopy using GFP-fused IRE1s revealed that IRE1β clustered into discrete foci upon ER stress. Also, fluorescence correlation spectroscopy (FCS) analysis in living cells indicated that the size of the IRE1β complex is robustly increased upon ER stress. Moreover, unlike IRE1α, the luminal domain of IRE1β showed anti-aggregation activity in vitro, and IRE1β was coprecipitated with the model unfolded proteins in cells. Strikingly, association with BiP was drastically reduced in IRE1β, while IRE1α was associated with BiP and dissociated upon ER stress. This is the first report indicating that, differently from IRE1α, the luminal event mediated by IRE1β involves direct interaction with unfolded proteins rather than association/dissociation with BiP, implying an intrinsic diversity in the sensing mechanism of mammalian sensors.


Biochemical Journal | 2005

An essential dimer-forming subregion of the endoplasmic reticulum stress sensor Ire1

Daisuke Oikawa; Yukio Kimata; Masato Takeuchi; Kenji Kohno

The luminal domain of the type I transmembrane protein Ire1 senses endoplasmic reticulum stress by an undefined mechanism to up-regulate the signalling pathway for the unfolded protein response. Previously, we proposed that the luminal domain of yeast Ire1 is divided into five subregions, termed subregions I-V sequentially from the N-terminus. Ire1 lost activity when internal deletions of subregion II or IV were made. In the present paper, we show that partial proteolysis of a recombinant protein consisting of the Ire1 luminal domain suggests that subregions II-IV are tightly folded. We also show that a recombinant protein of subregions II-IV formed homodimers, and that this homodimer formation was impaired by an internal deletion of subregion IV. Furthermore, recombinant fragments of subregion IV exhibited a self-binding ability. Therefore, although its sequence is little conserved evolutionarily, subregion IV plays an essential role to promote Ire1 dimer formation.


Nature Communications | 2016

Linear ubiquitination is involved in the pathogenesis of optineurin-associated amyotrophic lateral sclerosis

Seshiru Nakazawa; Daisuke Oikawa; Ryohei Ishii; Takashi Ayaki; Hirotaka Takahashi; Hiroyuki Takeda; Ryuichiro Ishitani; Kiyoko Kamei; Izumi Takeyoshi; Hideshi Kawakami; Kazuhiro Iwai; Izuho Hatada; Tatsuya Sawasaki; Hidefumi Ito; Osamu Nureki; Fuminori Tokunaga

Optineurin (OPTN) mutations cause neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and glaucoma. Although the ALS-associated E478G mutation in the UBAN domain of OPTN reportedly abolishes its NF-κB suppressive activity, the precise molecular basis in ALS pathogenesis still remains unclear. Here we report that the OPTN-UBAN domain is crucial for NF-κB suppression. Our crystal structure analysis reveals that OPTN-UBAN binds linear ubiquitin with homology to NEMO. TNF-α-mediated NF-κB activation is enhanced in OPTN-knockout cells, through increased ubiquitination and association of TNF receptor (TNFR) complex I components. Furthermore, OPTN binds caspase 8, and OPTN deficiency accelerates TNF-α-induced apoptosis by enhancing complex II formation. Immunohistochemical analyses of motor neurons from OPTN-associated ALS patients reveal that linear ubiquitin and activated NF-κB are partially co-localized with cytoplasmic inclusions, and that activation of caspases is elevated. Taken together, OPTN regulates both NF-κB activation and apoptosis via linear ubiquitin binding, and the loss of this ability may lead to ALS.

Collaboration


Dive into the Daisuke Oikawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yukio Kimata

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kenji Kohno

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akira Hosoda

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Asahi Ito

Nagoya City University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge