Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daisuke Tanaka is active.

Publication


Featured researches published by Daisuke Tanaka.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Vitrification is essential for anhydrobiosis in an African chironomid, Polypedilum vanderplanki

Minoru Sakurai; Takao Furuki; Ken-ichi Akao; Daisuke Tanaka; Yuichi Nakahara; Takahiro Kikawada; Masahiko Watanabe; Takashi Okuda

Anhydrobiosis is an extremely dehydrated state in which organisms show no detectable metabolism but retain the ability to revive after rehydration. Thus far, two hypotheses have been proposed to explain how cells are protected during dehydration: (i) water replacement by compatible solutes and (ii) vitrification. The present study provides direct physiological and physicochemical evidence for these hypotheses in an African chironomid, Polypedilum vanderplanki, which is the largest multicellular animal capable of anhydrobiosis. Differential scanning calorimetry measurements and Fourier-transform infrared (FTIR) analyses indicated that the anhydrobiotic larvae were in a glassy state up to as high as 65°C. Changing from the glassy to the rubbery state by either heating or allowing slight moisture uptake greatly decreased the survival rate of dehydrated larvae. In addition, FTIR spectra showed that sugars formed hydrogen bonds with phospholipids and that membranes remained in the liquid-crystalline state in the anhydrobiotic larvae. These results indicate that larvae of P. vanderplanki survive extreme dehydration by replacing the normal intracellular medium with a biological glass. When entering anhydrobiosis, P. vanderplanki accumulated nonreducing disaccharide trehalose that was uniformly distributed throughout the dehydrated body by FTIR microscopic mapping image. Therefore, we assume that trehalose plays important roles in water replacement and intracellular glass formation, although other compounds are surely involved in these phenomena.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Trehalose transporter 1, a facilitated and high-capacity trehalose transporter, allows exogenous trehalose uptake into cells

Takahiro Kikawada; Ayako Saito; Yasushi Kanamori; Yuichi Nakahara; Ken-ichi Iwata; Daisuke Tanaka; Masahiko Watanabe; Takashi Okuda

Trehalose is potentially a useful cryo- or anhydroprotectant molecule for cells and biomolecules such as proteins and nucleotides. A major obstacle to application is that cellular membranes are impermeable to trehalose. In this study, we isolated and characterized the functions of a facilitated trehalose transporter [trehalose transporter 1 (TRET1)] from an anhydrobiotic insect, Polypedilum vanderplanki. Tret1 cDNA encodes a 504-aa protein with 12 predicted transmembrane structures. Tret1 expression was induced by either desiccation or salinity stress. Expression was predominant in the fat body and occurred concomitantly with the accumulation of trehalose, indicating that TRET1 is involved in transporting trehalose synthesized in the fat body into the hemolymph. Functional expression of TRET1 in Xenopus oocytes showed that transport activity was stereochemically specific for trehalose and independent of extracellular pH (between 4.0 and 9.0) and electrochemical membrane potential. These results indicate that TRET1 is a trehalose-specific facilitated transporter and that the direction of transport is reversible depending on the concentration gradient of trehalose. The extraordinarily high values for apparent Km (≥100 mM) and Vmax (≥500 pmol/min per oocyte) for trehalose both indicate that TRET1 is a high-capacity transporter of trehalose. Furthermore, TRET1 was found to function in mammalian cells, suggesting that it confers trehalose permeability on cells, including those of vertebrates as well as insects. These characteristic features imply that TRET1 in combination with trehalose has high potential for basic and practical applications in vivo.


Insect Biochemistry and Molecular Biology | 2010

The trehalose transporter 1 gene sequence is conserved in insects and encodes proteins with different kinetic properties involved in trehalose import into peripheral tissues

Yasushi Kanamori; Ayako Saito; Yuka Hagiwara-Komoda; Daisuke Tanaka; Kanako Mitsumasu; Shingo Kikuta; Masahiko Watanabe; Richard Cornette; Takahiro Kikawada; Takashi Okuda

We recently cloned a trehalose transporter gene (Tret1) that contributes to anhydrobiosis induction in the sleeping chironomid Polypedilum vanderplanki Hinton. Because trehalose is the main haemolymph sugar in most insects, they might possess Tret1 orthologs involved in maintaining haemolymph trehalose levels. We cloned Tret1 orthologs from four species in three insect orders. The similarities of the amino acid sequence to TRET1 in P. vanderplanki were 58.5-80.4%. Phylogenetic analysis suggested the Tret1 sequences were conserved in insects. The Xenopus oocyte expression system showed apparent differences in the K(m) and V(max) values for trehalose transport activity among the six proteins encoded by the corresponding orthologs. The TRET1 orthologs of Anopheles gambiae (K(m): 45.74 +/- 3.58 mM) and Bombyx mori (71.58 +/- 6.45 mM) showed low trehalose affinity, whereas those of Apis mellifera (9.42 +/- 2.37 mM) and Drosophila melanogaster (10.94 +/- 7.70 mM) showed high affinity. This difference in kinetics might be reflected in the haemolymph trehalose:glucose ratio of each species. Tret1 was expressed not only in the fat body but also in muscle and testis. These findings suggest that insect TRET1 is responsible for the release of trehalose from the fat body and the incorporation of trehalose into other tissues that require a carbon source, thereby regulating trehalose levels in the haemolymph.


FEBS Journal | 2010

Enzymatic control of anhydrobiosis-related accumulation of trehalose in the sleeping chironomid, Polypedilum vanderplanki.

Kanako Mitsumasu; Yasushi Kanamori; Mika Fujita; Ken-ichi Iwata; Daisuke Tanaka; Shingo Kikuta; Masahiko Watanabe; Richard Cornette; Takashi Okuda; Takahiro Kikawada

Larvae of an anhydrobiotic insect, Polypedilumu2003vanderplanki, accumulate very large amounts of trehalose as a compatible solute on desiccation, but the molecular mechanisms underlying this accumulation are unclear. We therefore isolated the genes coding for trehalose metabolism enzymes, i.e. trehalose‐6‐phosphate synthase (TPS) and trehalose‐6‐phosphate phosphatase (TPP) for the synthesis step, and trehalase (TREH) for the degradation step. Although computational prediction indicated that the alternative splicing variants (PvTpsα/β) obtained encoded probable functional motifs consisting of a typical consensus domain of TPS and a conserved sequence of TPP, PvTpsα did not exert activity as TPP, but only as TPS. Instead, a distinct gene (PvTpp) obtained expressed TPP activity. Previous reports have suggested that insect TPS is, exceptionally, a bifunctional enzyme governing both TPS and TPP. In this article, we propose that TPS and TPP activities in insects can be attributed to discrete genes. The translated product of the TREH ortholog (PvTreh) certainly degraded trehalose to glucose. Trehalose was synthesized abundantly, consistent with increased activities of TPS and TPP and suppressed TREH activity. These results show that trehalose accumulation observed during anhydrobiosis induction in desiccating larvae can be attributed to the activation of the trehalose synthetic pathway and to the depression of trehalose hydrolysis.


Chemical Communications | 2010

Enhanced photocatalytic activity of quantum-confined tungsten trioxide nanoparticles in mesoporous silica

Daisuke Tanaka; Yuya Oaki; Hiroaki Imai

Due to quantum confinement effects, tungsten trioxide nanoparticles approximately 1.4 nm in diameter prepared in channels of mesoporous silica exhibited a widened bandgap and enhanced photocatalytic performance in the decomposition of benzene.


Tetrahedron Letters | 2001

Synthetic studies on apoptolidin: synthesis of the C1–C21 macrolide fragment

Kazunobu Toshima; Tsuyoshi Arita; Koji Kato; Daisuke Tanaka; Shuichi Matsumura

Abstract The stereoselective and convergent synthesis of the C1–C21 macrocyclic segment ( 2 ) of the apoptosis inducing macrolide antibiotic, apoptolidin ( 1 ), is described.


Cerebral Cortex | 2010

CXCR4 Is Required for Proper Regional and Laminar Distribution of Cortical Somatostatin-, Calretinin-, and Neuropeptide Y-Expressing GABAergic Interneurons

Daisuke Tanaka; Sakae Mikami; Takashi Nagasawa; Jun-ichi Miyazaki; Kazunori Nakajima; Fujio Murakami

Cortical GABAergic interneurons are divided into various subtypes, with each subtype contributing to rich variety and fine details of inhibition. Despite the functional importance of each interneuron subtype, the molecular mechanisms that contribute to sorting them to their appropriate positions within the cortex remain unclear. Here, we show that the chemokine receptor CXCR4 regulates the regional and layer-specific distribution of interneuron subtypes. We removed Cxcr4 specifically in a subset of interneurons at a specific mouse embryonic developmental stage and analyzed the number of interneurons and their laminar distribution in 9 representative cortical regions comprehensively in adults. We found that the number of Cxcr4-deleted calretinin- and that of neuropeptide Y-expressing interneurons were reduced in most caudomedial and lateral cortical regions, respectively, and also in superficial layers. In addition, Cxcr4-deleted somatostatin-expressing interneurons showed a reduction in the number of superficial layers in certain cortical regions but of deep layers in others. These findings suggest that CXCR4 is required for proper regional and laminar distribution in a wider interneuron subpopulation than previously thought and may regulate the establishment of functional cortical circuitry in certain cortical regions and layers.


European Journal of Neuroscience | 2012

Migratory pathways of GABAergic interneurons when they enter the neocortex

Daisuke Tanaka; Kazunori Nakajima

Inhibitory gamma‐aminobutyric‐acid‐containing interneurons play important roles in the functions of the neocortex. During rodent development, most neocortical interneurons are generated in the subpallium and migrate tangentially toward the neocortex. They migrate through multiple pathways to enter the neocortex. Failure of interneuron migration through these pathways during development leads to an abnormal distribution and abnormal functions of interneurons in the postnatal brain. Because of recent discoveries regarding the novel origins and migratory pathways of neocortical interneurons, in this article we review the literature on the migratory pathways of interneurons when they enter the neocortex.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Changes in cortical interneuron migration contribute to the evolution of the neocortex

Daisuke Tanaka; Ryo Oiwa; Erika Sasaki; Kazunori Nakajima

The establishment of the mammalian neocortex is often explained phylogenetically by an evolutionary change in the pallial neuronal progenitors of excitatory projection neurons. It remains unclear, however, whether and how the evolutionary change in inhibitory interneurons, which originate outside the neocortex, has been involved in the establishment of the neocortex. In this study, we transplanted chicken, turtle, mouse, and marmoset medial ganglionic eminence (MGE) cells into the embryonic mouse MGE in utero and compared their migratory behaviors. We found that the MGE cells from all of the species were able to migrate through the mouse neocortical subventricular zone and that both the mouse and marmoset cells subsequently invaded the neocortical cortical plate (CP). However, regardless of their birthdates and interneuron subtypes, most of the chicken and turtle cells ignored the neocortical CP and passed beneath it, although they were able to invade the archicortex and paleocortex, suggesting that the proper responsiveness of MGE cells to guidance cues to enter the neocortical CP is unique to mammals. When chicken MGE cells were transplanted directly into the neocortical CP, they were able to survive and mature, suggesting that the neocortical CP itself is essentially permissive for postmigratory development of chicken MGE cells. These results suggest that an evolutionary change in the migratory ability of inhibitory interneurons, which originate outside the neocortex, was involved in the establishment of the neocortex by supplying inhibitory components to the network.


Astrobiology | 2012

Tolerance of Anhydrobiotic Eggs of the Tardigrade Ramazzottius varieornatus to Extreme Environments

Daiki D. Horikawa; Ayami Yamaguchi; Tetsuya Sakashita; Daisuke Tanaka; Nobuyuki Hamada; Fumiko Yukuhiro; Hirokazu Kuwahara; Takekazu Kunieda; Masahiko Watanabe; Yuichi Nakahara; Seiichi Wada; Tomoo Funayama; Chihiro Katagiri; Seigo Higashi; Shin-ichi Yokobori; Mikinori Kuwabara; Lynn J. Rothschild; Takashi Okuda; Hirofumi Hashimoto; Yasuhiko Kobayashi

Tardigrades are tiny (less than 1u2009mm in length) invertebrate animals that have the potential to survive travel to other planets because of their tolerance to extreme environmental conditions by means of a dry ametabolic state called anhydrobiosis. While the tolerance of adult tardigrades to extreme environments has been reported, there are few reports on the tolerance of their eggs. We examined the ability of hydrated and anhydrobiotic eggs of the tardigrade Ramazzottius varieornatus to hatch after exposure to ionizing irradiation (helium ions), extremely low and high temperatures, and high vacuum. We previously reported that there was a similar pattern of tolerance against ionizing radiation between hydrated and anhydrobiotic adults. In contrast, anhydrobiotic eggs (50% lethal dose; 1690 Gy) were substantially more radioresistant than hydrated ones (50% lethal dose; 509 Gy). Anhydrobiotic eggs also have a broader temperature resistance compared with hydrated ones. Over 70% of the anhydrobiotic eggs treated at either -196°C or +50°C hatched successfully, but all the hydrated eggs failed to hatch. After exposure to high-vacuum conditions (5.3×10(-4) Pa to 6.2×10(-5) Pa), the hatchability of the anhydrobiotic eggs was comparable to that of untreated control eggs.

Collaboration


Dive into the Daisuke Tanaka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yasushi Kanamori

Kyoto Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuichi Nakahara

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge