Daisuke Urano
University of North Carolina at Chapel Hill
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daisuke Urano.
Open Biology | 2013
Daisuke Urano; Jin-Gui Chen; José Ramón Botella; Alan M. Jones
In animals, heterotrimeric G proteins, comprising α-, β-and γ-subunits, perceive extracellular stimuli through cell surface receptors, and transmit signals to ion channels, enzymes and other effector proteins to affect numerous cellular behaviours. In plants, G proteins have structural similarities to the corresponding molecules in animals but transmit signals by atypical mechanisms and effector proteins to control growth, cell proliferation, defence, stomate movements, channel regulation, sugar sensing and some hormonal responses. In this review, we summarize the current knowledge on the molecular regulation of plant G proteins, their effectors and the physiological functions studied mainly in two model organisms: Arabidopsis thaliana and rice (Oryza sativa). We also look at recent progress on structural analyses, systems biology and evolutionary studies.
Molecular Systems Biology | 2014
Karsten Klopffleisch; Nguyen Phan; Kelsey Augustin; Robert S. Bayne; Katherine S. Booker; José Ramón Botella; Nicholas C. Carpita; Tyrell Carr; Jin-Gui Chen; Thomas Ryan Cooke; Arwen Frick-Cheng; Erin J. Friedman; Brandon Fulk; Michael G. Hahn; Kun Jiang; Lucía Jordá; Lydia Kruppe; Chenggang Liu; Justine Lorek; Maureen C. McCann; Antonio Molina; Etsuko N. Moriyama; M. Shahid Mukhtar; Yashwanti Mudgil; Sivakumar Pattathil; John Schwarz; Steven Seta; Matthew Tan; Ulrike Temp; Yuri Trusov
The heterotrimeric G‐protein complex is minimally composed of Gα, Gβ, and Gγ subunits. In the classic scenario, the G‐protein complex is the nexus in signaling from the plasma membrane, where the heterotrimeric G‐protein associates with heptahelical G‐protein‐coupled receptors (GPCRs), to cytoplasmic target proteins called effectors. Although a number of effectors are known in metazoans and fungi, none of these are predicted to exist in their canonical forms in plants. To identify ab initio plant G‐protein effectors and scaffold proteins, we screened a set of proteins from the G‐protein complex using two‐hybrid complementation in yeast. After deep and exhaustive interrogation, we detected 544 interactions between 434 proteins, of which 68 highly interconnected proteins form the core G‐protein interactome. Within this core, over half of the interactions comprising two‐thirds of the nodes were retested and validated as genuine in planta. Co‐expression analysis in combination with phenotyping of loss‐of‐function mutations in a set of core interactome genes revealed a novel role for G‐proteins in regulating cell wall modification.
Nature Cell Biology | 2012
Daisuke Urano; Nguyen Phan; Janice C. Jones; Jing Yang; Jirong Huang; Jeffrey C. Grigston; J. Philip Taylor; Alan M. Jones
Signal transduction typically begins by ligand-dependent activation of a concomitant partner that is otherwise in its resting state. However, in cases where signal activation is constitutive by default, the mechanism of regulation is unknown. The Arabidopsis thaliana heterotrimeric Gα protein self-activates without accessory proteins, and is kept in its resting state by the negative regulator, AtRGS1 (regulator of G-protein signalling 1), which is the prototype of a seven-transmembrane receptor fused with an RGS domain. Endocytosis of AtRGS1 by ligand-dependent endocytosis physically uncouples the GTPase-accelerating activity of AtRGS1 from the Gα protein, permitting sustained activation. Phosphorylation of AtRGS1 by AtWNK8 kinase causes AtRGS1 endocytosis, required for both G-protein-mediated sugar signalling and cell proliferation. In animals, receptor endocytosis results in signal desensitization, whereas in plants, endocytosis results in signal activation. These findings reveal how different organisms rearrange a regulatory system to result in opposite outcomes using similar phosphorylation-dependent endocytosis mechanisms.
Annual Review of Plant Biology | 2014
Daisuke Urano; Alan M. Jones
Investigators studying G protein-coupled signaling--often called the best-understood pathway in the world owing to intense research in medical fields--have adopted plants as a new model to explore the plasticity and evolution of G signaling. Much research on plant G signaling has not disappointed. Although plant cells have most of the core elements found in animal G signaling, differences in network architecture and intrinsic properties of plant G protein elements make G signaling in plant cells distinct from the animal paradigm. In contrast to animal G proteins, plant G proteins are self-activating, and therefore regulation of G activation in plants occurs at the deactivation step. The self-activating property also means that plant G proteins do not need and therefore do not have typical animal G protein-coupled receptors. Targets of activated plant G proteins, also known as effectors, are unlike effectors in animal cells. The simpler repertoire of G signal elements in Arabidopsis makes G signaling easier to manipulate in a multicellular context.
PLOS Genetics | 2012
Daisuke Urano; Janice C. Jones; Hao Wang; Melissa Matthews; William Bradford; Jeffrey L. Bennetzen; Alan M. Jones
Animal heterotrimeric G proteins are activated by guanine nucleotide exchange factors (GEF), typically seven transmembrane receptors that trigger GDP release and subsequent GTP binding. In contrast, the Arabidopsis thaliana G protein (AtGPA1) rapidly activates itself without a GEF and is instead regulated by a seven transmembrane Regulator of G protein Signaling (7TM-RGS) protein that promotes GTP hydrolysis to reset the inactive (GDP-bound) state. It is not known if this unusual activation is a major and constraining part of the evolutionary history of G signaling in eukaryotes. In particular, it is not known if this is an ancestral form or if this mechanism is maintained, and therefore constrained, within the plant kingdom. To determine if this mode of signal regulation is conserved throughout the plant kingdom, we analyzed available plant genomes for G protein signaling components, and we purified individually the plant components encoded in an informative set of plant genomes in order to determine their activation properties in vitro. While the subunits of the heterotrimeric G protein complex are encoded in vascular plant genomes, the 7TM-RGS genes were lost in all investigated grasses. Despite the absence of a Gα-inactivating protein in grasses, all vascular plant Gα proteins examined rapidly released GDP without a receptor and slowly hydrolyzed GTP, indicating that these Gα are self-activating. We showed further that a single amino acid substitution found naturally in grass Gα proteins reduced the Gα-RGS interaction, and this amino acid substitution occurred before the loss of the RGS gene in the grass lineage. Like grasses, non-vascular plants also appear to lack RGS proteins. However, unlike grasses, one representative non-vascular plant Gα showed rapid GTP hydrolysis, likely compensating for the loss of the RGS gene. Our findings, the loss of a regulatory gene and the retention of the “self-activating” trait, indicate the existence of divergent Gα regulatory mechanisms in the plant kingdom. In the grasses, purifying selection on the regulatory gene was lost after the physical decoupling of the RGS protein and its cognate Gα partner. More broadly these findings show extreme divergence in Gα activation and regulation that played a critical role in the evolution of G protein signaling pathways.
Science Signaling | 2013
William Bradford; Adam Buckholz; John M. Morton; Collin Price; Alan M. Jones; Daisuke Urano
As eukaryotic organisms evolved, their Gα proteins switched from being self-activating to requiring an activating receptor. Evolving New Interactions Heterotrimeric G proteins become activated when GTP replaces GDP bound to the G protein α subunit; the GTPase activity of Gα hydrolyzes GTP to GDP to return the G protein to the inactive state. In animal cells, G protein–coupled receptors (GPCRs) activate cognate G proteins, whereas the Arabidopsis G protein is self-activating. Bradford et al. investigated the evolution of the G protein signaling network by performing phylogenetic analyses and in vitro characterization of the GTP binding and GTP hydrolysis rates of selected Gα proteins from divergent eukaryotic species. Gα proteins from Bikonts, including Arabidopsis and basal eukaryotes, which do not have GPCRs, exhibited self-activating properties, with rapid GTP binding and slow GTP hydrolysis rates, whereas Gα proteins from Unikonts, including fungi and humans, which have GPCRs, had opposing properties. These data indicate that in contrast to the GPCR-dominant system in higher eukaryotes, ancestral G proteins were not regulated at the activation step—and suggest that signaling molecules change their intrinsic properties as new interaction partners emerge. Although bioinformatic analysis of the increasing numbers of diverse genome sequences and amount of functional data has provided insight into the evolution of signaling networks, bioinformatics approaches have limited application for understanding the evolution of highly divergent protein families. We used biochemical analyses to determine the in vitro properties of selected divergent components of the heterotrimeric guanine nucleotide–binding protein (G protein) signaling network to investigate signaling network evolution. In animals, G proteins are activated by cell-surface seven-transmembrane (7TM) receptors, which are named G protein–coupled receptors (GPCRs) and function as guanine nucleotide exchange factors (GEFs). In contrast, the plant G protein is intrinsically active, and a 7TM protein terminates G protein activity by functioning as a guanosine triphosphatase–activating protein (GAP). We showed that ancient regulation of the G protein active state is GPCR-independent and “self-activating,” a property that is maintained in Bikonts, one of the two fundamental evolutionary clades containing eukaryotes, whereas G proteins of the other clade, the Unikonts, evolved from being GEF-independent to being GEF-dependent. Self-activating G proteins near the base of the Eukaryota are controlled by 7TM-GAPs, suggesting that the ancestral regulator of G protein activation was a GAP-functioning receptor, not a GEF-functioning GPCR. Our findings indicate that the GPCR paradigm describes a recently evolved network architecture found in a relatively small group of Eukaryota and suggest that the evolution of signaling network architecture is constrained by the availability of molecules that control the activation state of nexus proteins.
Plant Physiology | 2013
Daisuke Urano; Alan M. Jones
An evolutionary argument supports the conclusion that plants do not have G protein coupled receptors.
Journal of Biological Chemistry | 2016
Meral Tunc-Ozdemir; Daisuke Urano; Dinesh Kumar Jaiswal; Steven D. Clouse; Alan M. Jones
Plants and some protists have heterotrimeric G protein complexes that activate spontaneously without canonical G protein-coupled receptors (GPCRs). In Arabidopsis, the sole 7-transmembrane regulator of G protein signaling 1 (AtRGS1) modulates the G protein complex by keeping it in the resting state (GDP-bound). However, it remains unknown how a myriad of biological responses is achieved with a single G protein modulator. We propose that in complete contrast to G protein activation in animals, plant leucine-rich repeat receptor-like kinases (LRR RLKs), not GPCRs, provide this discrimination through phosphorylation of AtRGS1 in a ligand-dependent manner. G protein signaling is directly activated by the pathogen-associated molecular pattern flagellin peptide 22 through its LRR RLK, FLS2, and co-receptor BAK1.
Journal of Experimental Botany | 2014
Daisuke Urano; Alejandro Colaneri; Alan M. Jones
Highlight text This work reveals two distinct functions of Gα in NaCl stress in rice and maize: attenuation of leaf senescence caused by sodium toxicity in leaves, and cell cycle regulation by osmotic/ionic stress.
Plant and Cell Physiology | 2016
Daisuke Urano; Kotaro Miura; Qingyu Wu; Yukimoto Iwasaki; David Jackson; Alan M. Jones
The heterotrimeric G protein complex, comprising Gα, Gγ and Gγ subunits, is an evolutionarily conserved signaling molecular machine that transmits signals from transmembrane receptors to downstream target proteins. Plants conserved the core G protein elements, while developing their own regulatory systems differently from animals. Genetic evidence supports the conclusion that the heterotrimeric G proteins regulate shoot, root and epidermis development, as well as sugar sensing, hormone responsiveness and abiotic and biotic stress tolerance. This review is a compendium of the known morphological changes conferred by loss- and gain-of-function mutations of the G protein subunit genes across three higher land plant models, namely Arabidopsis, rice and maize.