Daisy H. Dent
University of Stirling
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daisy H. Dent.
Conservation Biology | 2009
Robin L. Chazdon; Carlos A. Peres; Daisy H. Dent; Douglas Sheil; Ariel E. Lugo; David Lamb; Nigel E. Stork; Scott E. Miller
In the wake of widespread loss of old-growth forests throughout the tropics, secondary forests will likely play a growing role in the conservation of forest biodiversity. We considered a complex hierarchy of factors that interact in space and time to determine the conservation potential of tropical secondary forests. Beyond the characteristics of local forest patches, spatial and temporal landscape dynamics influence the establishment, species composition, and persistence of secondary forests. Prospects for conservation of old-growth species in secondary forests are maximized in regions where the ratio of secondary to old-growth forest area is relatively low, older secondary forests have persisted, anthropogenic disturbance after abandonment is relatively low, seed-dispersing fauna are present, and old-growth forests are close to abandoned sites. The conservation value of a secondary forest is expected to increase over time, as species arriving from remaining old-growth forest patches accumulate. Many studies are poorly replicated, which limits robust assessments of the number and abundance of old-growth species present in secondary forests. Older secondary forests are not often studied and few long-term studies are conducted in secondary forests. Available data indicate that both old-growth and second-growth forests are important to the persistence of forest species in tropical, human-modified landscapes.
Nature | 2016
Lourens Poorter; Frans Bongers; T. Mitchell Aide; Angélica M. Almeyda Zambrano; Patricia Balvanera; Justin M. Becknell; Vanessa K. Boukili; Pedro H. S. Brancalion; Eben N. Broadbent; Robin L. Chazdon; Dylan Craven; Jarcilene Silva de Almeida-Cortez; George A. L. Cabral; Ben H J De Jong; Julie S. Denslow; Daisy H. Dent; Saara J. DeWalt; Juan M. Dupuy; Sandra M. Durán; Mario M. Espírito-Santo; María C. Fandiño; Ricardo G. César; Jefferson S. Hall; José Luis Hernández‐Stefanoni; Catarina C. Jakovac; André Braga Junqueira; Deborah Kennard; Susan G. Letcher; Juan Carlos Licona; Madelon Lohbeck
Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha−1), corresponding to a net carbon uptake of 3.05 Mg C ha−1 yr−1, 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha−1) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.
Science Advances | 2016
Robin L. Chazdon; Eben N. Broadbent; Danaë M. A. Rozendaal; Frans Bongers; Angélica M. Almeyda Zambrano; T. Mitchell Aide; Patricia Balvanera; Justin M. Becknell; Vanessa K. Boukili; Pedro H. S. Brancalion; Dylan Craven; Jarcilene Silva de Almeida-Cortez; George A. L. Cabral; Ben de Jong; Julie S. Denslow; Daisy H. Dent; Saara J. DeWalt; Juan Manuel Dupuy; Sandra M. Durán; Mario M. Espírito-Santo; María C. Fandiño; Ricardo G. César; Jefferson S. Hall; José Luis Hernández-Stefanoni; Catarina C. Jakovac; André Braga Junqueira; Deborah Kennard; Susan G. Letcher; Madelon Lohbeck; Miguel Martínez-Ramos
Models reveal the high carbon mitigation potential of tropical forest regeneration. Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km2 of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services.
Plant and Soil | 2006
Daisy H. Dent; Robert Bagchi; David Robinson; Noreen Majalap-Lee; David F. R. P. Burslem
The extent to which plant communities are determined by resource availability is a central theme in ecosystem science, but patterns of small-scale variation in resource availability are poorly known. Studies of carbon (C) and nutrient cycling provide insights into factors limiting tree growth and forest productivity. To investigate rates of tropical forest litter production and decomposition in relation to nutrient availability and topography in the absence of confounding large-scale variation in climate and altitude we quantified nutrient fluxes via litterfall and leaf litter decomposition within three distinct floristic associations of tropical rain forest growing along a soil fertility gradient at the Sepilok Forest Reserve (SFR), Sabah, Malaysia. The quantity and nutrient content of small litter decreased along a gradient of soil nutrient availability from alluvial forest (most fertile) through sandstone forest to heath forest (least fertile). Temporal variation in litterfall was greatest in the sandstone forest, where the amount of litter was correlated negatively with rainfall in the previous month. Mass loss and N and P release were fastest from alluvial forest litter, and slowest from heath forest litter. All litter types decomposed most rapidly in the alluvial forest. Stand-level N and P use efficiencies (ratios of litter dry mass to nutrient content) were greatest for the heath forest followed by the sandstone ridge, sandstone valley and alluvial forests, respectively. We conclude that nutrient supply limits productivity most in the heath forest and least in the alluvial forest. Nutrient supply limited productivity in sandstone forest, especially on ridge and hill top sites where nutrient limitation may be exacerbated by reduced rates of litter decomposition during dry periods. The fluxes of N and P varied significantly between the different floristic communities at SFR and these differences may contribute to small-scale variation in species composition.
Ecology and Evolution | 2014
Christopher D. Philipson; Daisy H. Dent; Michael J. O'Brien; Juliette Chamagne; Dzaeman Dzulkifli; Reuben Nilus; Sam Philips; Glen Reynolds; Philippe Saner; Andy Hector
A life-history trade-off between low mortality in the dark and rapid growth in the light is one of the most widely accepted mechanisms underlying plant ecological strategies in tropical forests. Differences in plant functional traits are thought to underlie these distinct ecological strategies; however, very few studies have shown relationships between functional traits and demographic rates within a functional group. We present 8 years of growth and mortality data from saplings of 15 species of Dipterocarpaceae planted into logged-over forest in Malaysian Borneo, and the relationships between these demographic rates and four key functional traits: wood density, specific leaf area (SLA), seed mass, and leaf C:N ratio. Species-specific differences in growth rates were separated from seedling size effects by fitting nonlinear mixed-effects models, to repeated measurements taken on individuals at multiple time points. Mortality data were analyzed using binary logistic regressions in a mixed-effects models framework. Growth increased and mortality decreased with increasing light availability. Species differed in both their growth and mortality rates, yet there was little evidence for a statistical interaction between species and light for either response. There was a positive relationship between growth rate and the predicted probability of mortality regardless of light environment, suggesting that this relationship may be driven by a general trade-off between traits that maximize growth and traits that minimize mortality, rather than through differential species responses to light. Our results indicate that wood density is an important trait that indicates both the ability of species to grow and resistance to mortality, but no other trait was correlated with either growth or mortality. Therefore, the growth mortality trade-off among species of dipterocarp appears to be general in being independent of species crossovers in performance in different light environments.
Journal of Sustainable Forestry | 2008
Taek Joo Kim; Florencia Montagnini; Daisy H. Dent
ABSTRACT The exotic grass, Saccharum spontaneum L., has invaded abandoned agricultural lands in the Panama Canal Watershed for decades. The grass aggressively competes with regenerating tree seedlings preventing natural forest regeneration. To estimate effectual light level for controlling the grass, the growth of S. spontaneum was measured under a range of artificial shading conditions. Five shade treatment subplots–light intensities of 100% (full sunlight), 50, 25, 15, and 5%–were established at each of eight plots in land adjacent to the Panama Canal Watershed. Each site was cleared of S. spontaneum and then the regrowth was harvested. The regrowth of the grass was harvested and measured four times every one and half months for six months. The biomass of S. spontaneum was significantly less in lower light conditions than in full sunlight. The results showed that comparing growth of the grass at each harvest date, except for the first harvest date, there were significant differences between full sunlight and light intensities of 5, 15 and 25%. When compared by different harvest dates for each light level, only full sunlight showed a significant difference in biomass of the grass. The study demonstrates that shading is an effective method for controlling S. spontaneum. The results can be applied to developing reforestation strategies for abandoned lands occupied by S. spontaneum.
Plant Ecology & Diversity | 2016
Daisy H. Dent; David F. R. P. Burslem
Background: Tree species composition at the landscape scale is often tightly associated with underlying soil type in tropical forests. Changes in soil type may have effects on forest structure that drive changes in both light and soil resource availability, since light availability in the understorey tends to be lower in more fertile sites. Plant functional traits may determine species distributions across gradients of light and soil resource availability. Aims: To test whether tree species with contrasting distributions exhibit leaf traits that reflect adaptation to the resources most limiting in their native environment. Methods: We measured foliar nutrient concentrations, stomatal density, leaf δ13C values, leaf mass per area, and leaf lifespan for saplings of nine common dipterocarp species at Sepilok Forest Reserve, Malaysian Borneo, possessing varying associations to soil resource habitats. Results: Species specialised in their adult distribution to nutrient-poor sandstone soils had traits indicative of a nutrient conservation strategy. Species specialised to more fertile alluvial soils had a wider spectrum of leaf N and P concentrations and LL, reflecting greater variance in strategies for resource acquisition and use among species in this habitat. Conclusions: Understorey light regimes co-vary with soil type, and both light and soil resource availability influence leaf trait adaptations that may contribute to species–habitat associations.
Nature Ecology and Evolution | 2018
Maga Gei; Danaë M. A. Rozendaal; Lourens Poorter; Frans Bongers; Janet I. Sprent; Mira D. Garner; T. Mitchell Aide; José Luis Andrade; Patricia Balvanera; Justin M. Becknell; Pedro H. S. Brancalion; George A. L. Cabral; Ricardo G. César; Robin L. Chazdon; Rebecca J. Cole; Gabriel Dalla Colletta; Ben de Jong; Julie S. Denslow; Daisy H. Dent; Saara J. DeWalt; Juan Manuel Dupuy; Sandra M. Durán; Mário Marcos do Espírito Santo; G. Wilson Fernandes; Yule Roberta Ferreira Nunes; Bryan Finegan; Vanessa Granda Moser; Jefferson S. Hall; José Luis Hernández-Stefanoni; André Braga Junqueira
The nutrient demands of regrowing tropical forests are partly satisfied by nitrogen-fixing legume trees, but our understanding of the abundance of those species is biased towards wet tropical regions. Here we show how the abundance of Leguminosae is affected by both recovery from disturbance and large-scale rainfall gradients through a synthesis of forest inventory plots from a network of 42 Neotropical forest chronosequences. During the first three decades of natural forest regeneration, legume basal area is twice as high in dry compared with wet secondary forests. The tremendous ecological success of legumes in recently disturbed, water-limited forests is likely to be related to both their reduced leaflet size and ability to fix N2, which together enhance legume drought tolerance and water-use efficiency. Earth system models should incorporate these large-scale successional and climatic patterns of legume dominance to provide more accurate estimates of the maximum potential for natural nitrogen fixation across tropical forests.Data from 42 chronosequence sites show a geater abundance of legumes in seasonally dry forests than in wet forests, particularly during early secondary succession, probably owing to legumes’ nitrogen-fixing ability and reduced leaflet size.
PLOS ONE | 2017
Isabel L. Jones; Carlos A. Peres; Maíra Benchimol; Lynsey Bunnefeld; Daisy H. Dent
Tropical forest fragmentation creates insular biological communities that undergo species loss and changes in community composition over time, due to area- and edge-effects. Woody lianas thrive in degraded and secondary forests, due to their competitive advantage over trees in these habitats. Lianas compete both directly and indirectly with trees, increasing tree mortality and turnover. Despite our growing understanding of liana-tree dynamics, we lack detailed knowledge of the assemblage-level responses of lianas themselves to fragmentation, particularly in evergreen tropical forests. We examine the responses of both sapling and mature liana communities to landscape-scale forest insularization induced by a mega hydroelectric dam in the Brazilian Amazon. Detailed field inventories were conducted on islands created during reservoir filling, and in nearby mainland continuous forest. We assess the relative importance of variables associated with habitat fragmentation such as area, isolation, surrounding forest cover, fire and wind disturbance, on liana community attributes including abundance, basal area, diversity, and composition. We also explore patterns of liana dominance relative to tree saplings and adults ≥10 cm diameter at breast height. We find that 1) liana community composition remains remarkably similar across mainland continuous forest and islands, regardless of extreme area- and edge- effects and the loss of vertebrate dispersers in the latter; and 2) lianas are increasing in dominance relative to trees in the sapling layer in the most degraded islands, with both the amount of forest cover surrounding islands and fire disturbance history predicting liana dominance. Our data suggest that liana communities persist intact in isolated forests, regardless of extreme area- and edge-effects; while in contrast, tree communities simultaneously show evidence of increased turnover and supressed recruitment. These processes may lead to lianas becoming a dominant component of this dam-induced fragmented landscape in the future, due to their competitive advantage over trees in degraded forest habitats. Additional loss of tree biomass and diversity brought about through competition with lianas, and the concurrent loss of carbon storage, should be accounted for in impact assessments of future dam development.
Ecology and Evolution | 2018
Tom Bradfer-Lawrence; Nick Gardner; Daisy H. Dent
Abstract Secondary forest habitats are increasingly recognized for their potential to conserve biodiversity in the tropics. However, the development of faunal assemblages in secondary forest systems varies according to habitat quality and species‐specific traits. In this study, we predicted that the recovery of bird assemblages is dependent on secondary forest age and level of isolation, the forest stratum examined, and the species’ traits of feeding guild and body mass. This study was undertaken in secondary forests in central Panama; spanning a chronosequence of 60‐, 90‐, and 120‐year‐old forests, and in neighboring old‐growth forest. To give equal attention to all forest strata, we employed a novel method that paired simultaneous surveys in canopy and understory. This survey method provides a more nuanced picture than ground‐based studies, which are biased toward understory assemblages. Bird reassembly varied according to both habitat age and isolation, although it was challenging to separate these effects, as the older sites were also more isolated than the younger sites. In combination, habitat age and isolation impacted understory birds more than canopy‐dwelling birds. Proportions of dietary guilds did not vary with habitat age, but were significantly different between strata. Body mass distributions were similar across forest ages for small‐bodied birds, but older forest supported more large‐bodied birds, probably due to control of poaching at these sites. Canopy assemblages were characterized by higher species richness, and greater variation in both dietary breadth and body mass, relative to understory assemblages. The results highlight that secondary forests may offer critical refugia for many bird species, particularly specialist canopy‐dwellers. However, understory bird species may be less able to adapt to novel and isolated habitats and should be the focus of conservation efforts encouraging bird colonization of secondary forests.