Daji Luo
Wuhan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daji Luo.
Endocrinology | 2015
Haipei Tang; Yun Liu; Daji Luo; Satoshi Ogawa; Yike Yin; Shuisheng Li; Yong Zhang; Wei Hu; Ishwar S. Parhar; Haoran Lin; Xiaochun Liu; Christopher H.K. Cheng
The kiss1/gpr54 signaling system is considered to be a critical regulator of reproduction in most vertebrates. However, this presumption has not been tested vigorously in nonmammalian vertebrates. Distinct from mammals, multiple kiss1/gpr54 paralogous genes (kiss/kissr) have been identified in nonmammalian vertebrates, raising the possibility of functional redundancy among these genes. In this study, we have systematically generated the zebrafish kiss1(-/-), kiss2(-/-), and kiss1(-/-);kiss2(-/-) mutant lines as well as the kissr1(-/-), kissr2(-/-), and kissr1(-/-);kissr2(-/-) mutant lines using transcription activator-like effector nucleases. We have demonstrated that spermatogenesis and folliculogenesis as well as reproductive capability are not impaired in all of these 6 mutant lines. Collectively, our results indicate that kiss/kissr signaling is not absolutely required for zebrafish reproduction, suggesting that the kiss/kissr systems play nonessential roles for reproduction in certain nonmammalian vertebrates. These findings also demonstrated that fish and mammals have evolved different strategies for neuroendocrine control of reproduction.
PLOS ONE | 2013
Yun Liu; Daji Luo; Hui Zhao; Zuoyan Zhu; Wei Hu; Christopher H.K. Cheng
Transcription activator-like effector nucleases (TALENs) have so far been applied to disrupt protein-coding genes which constitute only 2–3% of the genome in animals. The majority (70–90%) of the animal genome is actually transcribed as non-coding RNAs (ncRNAs), yet the lack of efficient tools to knockout ncRNA genes hinders studies on their in vivo functions. Here we have developed novel strategies using TALENs to achieve precise and inheritable large genomic deletions and knockout of ncRNA genes in zebrafish. We have demonstrated that individual miRNA genes could be disrupted using one pair of TALENs, whereas large microRNA (miRNA) gene clusters and long non-coding RNA (lncRNA) genes could be precisely deleted using two pairs of TALENs. We have generated large genomic deletions of two miRNA clusters (the 1.2 kb miR-17-92 cluster and the 79.8 kb miR-430 cluster) and one long non-coding RNA (lncRNA) gene (the 9.0 kb malat1), and the deletions are transmitted through the germline. Taken together, our results establish TALENs as a robust tool to engineer large genomic deletions and knockout of ncRNA genes, thus opening up new avenues in the application of TALENs to study the genome in vivo.
Methods | 2014
Yun Liu; Daji Luo; Yong Lei; Wei Hu; Hui Zhao; Christopher H.K. Cheng
Transcription activator like effector nucleases (TALENs) is a promising approach to disrupt intended genomic loci. The assembly of highly effective TALENs is critical for successful genome editing. Recently we reported a convenient and robust platform to construct customized TALENs. The TALENs generated by this platform have been proven to be highly effective for gene disruption in Xenopus tropicalis and zebrafish as well as large genomic deletions in zebrafish. The one-time success rate of targeted gene disruption is about 90% for more than 100 genomic loci tested, with the mutation frequencies often reaching above 50%. Here we describe the validated protocol for TALEN assembly, methods for generating gene knockout animals in X. tropicalis and zebrafish, as well as the protocol for engineering large genomic deletions in zebrafish.
PLOS ONE | 2011
Jing Xu; Wei Huang; Chengrong Zhong; Daji Luo; Shuangfei Li; Zuoyan Zhu; Wei Hu
Background The hypothalamic-pituitary-gonadal (HPG) axis is critical in the development and regulation of reproduction in fish. The inhibition of neuropeptide gonadotropin-releasing hormone (GnRH) expression may diminish or severely hamper gonadal development due to it being the key regulator of the axis, and then provide a model for the comprehensive study of the expression patterns of genes with respect to the fish reproductive system. Methodology/Principal Findings In a previous study we injected 342 fertilized eggs from the common carp (Cyprinus carpio) with a gene construct that expressed antisense sGnRH. Four years later, we found a total of 38 transgenic fish with abnormal or missing gonads. From this group we selected the 12 sterile females with abnormal ovaries in which we combined suppression subtractive hybridization (SSH) and cDNA microarray analysis to define changes in gene expression of the HPG axis in the present study. As a result, nine, 28, and 212 genes were separately identified as being differentially expressed in hypothalamus, pituitary, and ovary, of which 87 genes were novel. The number of down- and up-regulated genes was five and four (hypothalamus), 16 and 12 (pituitary), 119 and 93 (ovary), respectively. Functional analyses showed that these genes involved in several biological processes, such as biosynthesis, organogenesis, metabolism pathways, immune systems, transport links, and apoptosis. Within these categories, significant genes for neuropeptides, gonadotropins, metabolic, oogenesis and inflammatory factors were identified. Conclusions/Significance This study indicated the progressive scaling-up effect of hypothalamic sGnRH antisense on the pituitary and ovary receptors of female carp and provided comprehensive data with respect to global changes in gene expression throughout the HPG signaling pathway, contributing towards improving our understanding of the molecular mechanisms and regulative pathways in the reproductive system of teleost fish.
Biology of Reproduction | 2009
Daji Luo; Wei Hu; Shangping Chen; Yi Xiao; Yong-Hua Sun; Zuoyan Zhu
Abstract Comparative analyses of differentially expressed genes between somatic cell nuclear transfer (SCNT) embryos and zygote-developing (ZD) embryos are important for understanding the molecular mechanism underlying the reprogramming processes. Herein, we used the suppression subtractive hybridization approach and from more than 2900 clones identified 96 differentially expressed genes between the SCNT and ZD embryos at the dome stage in zebrafish. We report the first database of differentially expressed genes in zebrafish SCNT embryos. Collectively, our findings demonstrate that zebrafish SCNT embryos undergo significant reprogramming processes during the dome stage. However, most differentially expressed genes are down-regulated in SCNT embryos, indicating failure of reprogramming. Based on Ensembl description and Gene Ontology Consortium annotation, the problems of reprogramming at the dome stage may occur during nuclear remodeling, translation initiation, and regulation of the cell cycle. The importance of regulation from recipient oocytes in cloning should not be underestimated in zebrafish.
Scientific Reports | 2015
Yunsheng Zhang; Ji Chen; Xiaojuan Cui; Daji Luo; Hui Xia; Jun Dai; Zuoyan Zhu; Wei Hu
A major impediment to the commercialization and cultivation of transgenic fish is the potential ecological risks they pose to natural environments: a problem that could be solved by the production of sterile transgenic fish. Here, we have developed an on-off reproductive containment strategy for fish that renders the offspring sterile but leaves their parents fertile. TG1 (Tol2-CMV-GFP-pA-CMV-gal4-pA-Tol2) and TG2 (Tol2-CMV-RFP-pA-5 × UAS-as/dnd-pA-Tol2) zebrafish lines were established using a GAL4/UAS system. While the parental lines remained fertile, in the hybrid offspring, GAL4 induced 5 × UAS to drive the transcription of antisense dnd, which significantly down-regulated endogenous dnd expression. This disrupted the migration of primordial germ cells (PGCs), led to their apoptosis, and resulted in few or no PGCs migrating to the genital ridge. This process induced sterility or reduced fertility in adult fish. This on-off strategy is a potentially effective means of generating sterile fish for commercialization while retaining fertility in brood stocks, and offers a novel method to mitigate the ecological risks of fish introductions.
Scientific Reports | 2017
Zhaojing Lu; Xuebin Hu; Fei Liu; Dinesh C. Soares; Xiliang Liu; Shanshan Yu; Meng Gao; Shanshan Han; Yayun Qin; Chang Li; Tao Jiang; Daji Luo; An-Yuan Guo; Zhaohui Tang; Mugen Liu
Mutations in EYS are associated with autosomal recessive retinitis pigmentosa (arRP) and autosomal recessive cone-rod dystrophy (arCRD) however, the function of EYS and the molecular mechanisms of how these mutations cause retinal degeneration are still unclear. Because EYS is absent in mouse and rat, and the structure of the retina differs substantially between humans and Drosophila, we utilised zebrafish as a model organism to study the function of EYS in the retina. We constructed an EYS-knockout zebrafish-line by TALEN technology which showed visual impairment at an early age, while the histological and immunofluorescence assays indicated the presence of progressive retinal degeneration with a cone predominately affected pattern. These phenotypes recapitulate the clinical manifestations of arCRD patients. Furthermore, the EYS−/− zebrafish also showed mislocalisation of certain outer segment proteins (rhodopsin, opn1lw, opn1sw1, GNB3 and PRPH2), and disruption of actin filaments in photoreceptors. Protein mislocalisation may, therefore, disrupt the function of cones and rods in these zebrafish and cause photoreceptor death. Collectively, these results point to a novel role for EYS in maintaining the morphological structure of F-actin and in protein transport, loss of this function might be the trigger for the resultant cellular events that ultimately lead to photoreceptor death.
Scientific Reports | 2015
Daji Luo; Yun Liu; Ji Chen; Xiao-Qin Xia; Mengxi Cao; Bin Cheng; Xuejuan Wang; Wuming Gong; Chao Qiu; Yunsheng Zhang; Christopher Hon Ki Cheng; Zuoyan Zhu; Wei Hu
Medaka is an ideal model for sex determination and sex reversal, such as XY phenotypically female patients in humans. Here, we assembled improved TALENs targeting the DMY gene and generated XYDMY− mutants to investigate gonadal dysgenesis in medaka. DMY-TALENs resulted in indel mutations at the targeted loci (46.8%). DMY-nanos3UTR-TALENs induced mutations were passed through the germline to F1 generation with efficiencies of up to 91.7%. XYDMY− mutants developed into females, laid eggs, and stably passed the YDMY− chromosome to next generation. RNA-seq generated 157 million raw reads from WT male (WT_M_TE), WT female (WT_F_OV) and XYDMY− female medaka (TA_F_OV) gonad libraries. Differential expression analysis identified 144 up- and 293 down-regulated genes in TA_F_OV compared with WT_F_OV, 387 up- and 338 down-regulated genes in TA_F_OV compared with WT_M_TE. According to genes annotation and functional prediction, such as Wnt1 and PRCK, it revealed that incomplete ovarian function and reduced fertility of XYDMY− mutant is closely related to the wnt signaling pathway. Our results provided the transcriptional profiles of XYDMY− mutants, revealed the mechanism between sex reversal and DMY in medaka, and suggested that XYDMY− medaka was a novel mutant that is useful for investigating gonadal dysgenesis in phenotypic female patients with the 46, XY karyotype.
DNA and Cell Biology | 2012
Ke Su; Yihao Tian; Jing Wang; Wentao Shi; Daji Luo; Jian Liu; Zan Tong; Junzhu Wu; Jingwei Zhang; Lei Wei
Metastasis is the leading cause of death in breast cancer patients. Recent evidence suggests that inflammation-related cytokine tumor necrosis factor-alpha (TNF-α) is implicated in tumor invasion and metastasis, but the mechanism of its involvement remains elusive. In this study, we employed MCF-7 breast cancer cells as an experimental model to demonstrate that TNF-α inhibits breast cancer cell adhesion and cell proliferation through hypoxia inducible factor-1alpha (HIF-1α) mediated suppression of vasodilator-stimulated phosphoprotein (VASP). We observed that TNF-α treatment attenuated the adhesion and proliferation of MCF-7 cells it also dramatically increased HIF-1α expression and decreased VASP expression. Through a variety of approaches, including promoter assay, electrophoretic mobility shift assay (EMSA), and chromatin immunoprecipitation (ChIP), we identified VASP as a direct target gene of HIF-1α. In addition, we confirmed that HIF-1α mediated the repression of VASP expression by TNF-α in MCF-7 cells. We also demonstrated that exogenous VASP expression or knockdown of HIF-1α relieved TNF-α induced inhibition of cell adhesion and proliferation. We identified a novel TNF-α/HIF-1α/VASP axis in which HIF-1α acts downstream of TNF-α to inhibit VASP expression and modulate the adhesion and proliferation of breast cancer cells. These data provide new insight into the potential anti-tumor effects of TNF-α.
Scientific Reports | 2016
Ji Chen; Xiaojuan Cui; Shaoting Jia; Daji Luo; Mengxi Cao; Yunsheng Zhang; Hongling Hu; Kaiyao Huang; Zuoyan Zhu; Wei Hu
DMC1 is a recombinase that is essential for meiotic synapsis. Experiments in extensive species of eukaryotes have indicated the independent role of DMC1 in repairing double strand breaks (DSBs) produced during meiosis I. Mutation of dmc1 in mice and human often leads to obstacles in spermatogenesis and male sterility. Here, we report on the disruption of dmc1 in male medaka (Oryzias latipes). Synapsis was disturbed in the mutant medaka testis nuclei, as observed in mice and other organisms. Unexpectedly, the mutant medaka could produce a few sperm and, although most of these had multiple tail or multiple head malformations, some of them could swim, and few of them even had insemination ability. Our transcriptome analysis showed that there was not a remarkable change in the expression of most of the genes involved in the pathways associated with the meiotic DNA repair and flagella assembly. Our results provided an indication of the accessory mechanisms that might be involved in the repair of DSBs during meiosis. In a species besides humans, we provided evidence that disorders in meiosis recombination might lead to the malformation of sperm.