Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dale A. Frail is active.

Publication


Featured researches published by Dale A. Frail.


Nature | 1992

A planetary system around the millisecond pulsar PSR1257+12

A. Wolszczan; Dale A. Frail

MILLISECOND radio pulsars, which are old (∼109yr), rapidly rotating neutron stars believed to be spun up by accretion of matter from their stellar companions, are usually found in binary systems with other degenerate stars1. Using the 305-m Arecibo radiotelescope to make precise timing measurements of pulses from the recently discovered 6.2-ms pulsar PSR1257 +12 (ref. 2), we demonstrate that, rather than being associated with a stellar object, the pulsar is orbited by two or more planet-sized bodies. The planets detected so far have masses of at least 2.8 M⊕ and 3.4 M⊕ where M⊕ is the mass of the Earth. Their respective distances from the pulsar are 0.47 AU and 0.36 AU, and they move in almost circular orbits with periods of 98.2 and 66.6 days. Observations indicate that at least one more planet may be present in this system. The detection of a planetary system around a nearby (∼500 pc), old neutron star, together with the recent report on a planetary companion to the pulsar PSR1829–10 (ref. 3) raises the tantalizing possibility that a non-negligible fraction of neutron stars observable as radio pulsars may be orbited by planet-like bodies.


The Astrophysical Journal | 2001

BEAMING IN GAMMA-RAY BURSTS: EVIDENCE FOR A STANDARD ENERGY RESERVOIR

Dale A. Frail; S. R. Kulkarni; Re'em Sari; S. G. Djorgovski; J. S. Bloom; Titus J. Galama; Daniel E. Reichart; Edo Berger; Fiona A. Harrison; Paul A. Price; Scott A. Yost; A. Diercks; Robert W. Goodrich; Frederic H. Chaffee

We present a comprehensive sample of all gamma-ray burst (GRB) afterglows with known distances, and we derive their conical opening angles based on observed broadband breaks in their light curves. Within the framework of this conical jet model, we correct for the geometry and we find that the gamma-ray energy release is narrowly clustered around 5 × 10^(50) ergs. We draw three conclusions. First, the central engines of GRBs release energies that are comparable to ordinary supernovae. Second, the broad distribution in fluence and luminosity for GRBs is largely the result of a wide variation of opening angles. Third, only a small fraction of GRBs are visible to a given observer, and the true GRB rate is several hundred times larger than the observed rate.


Nature | 1998

An X-ray pulsar with a superstrong magnetic field in the soft gamma-ray repeater SGR 1806-20

C. Kouveliotou; S. Dieters; T.E. Strohmayer; J.A. van Paradijs; G. J. Fishman; C.A. Meegan; K. Hurley; J.M. Kommers; I. A. Smith; Dale A. Frail; Toshio Murakami

Soft γ-ray repeaters (SGRs) emit multiple, brief (∼0.1-s), intense outbursts of low-energy γ-rays. They are extremely rare—three are known in our Galaxy and one in the Large Magellanic Cloud. Two SGRs are associated with young supernova remnants (SNRs), and therefore most probably with neutron stars, but it remains a puzzle why SGRs are so different from ‘normal’ radio pulsars. Here we report the discovery of pulsations in the persistent X-ray flux of SGR1806 − 20, with a period of 7.47 s and a spindown rate of 2.6 × 10−3 s yr−1. We argue that the spindown is due to magnetic dipole emission and find that the pulsar age and (dipolar) magnetic field strength are ∼1,500 years and 8× 1014 gauss, respectively. Our observations demonstrate the existence of ‘magnetars’, neutron stars with magnetic fields about 100 times stronger than those of radio pulsars, and support earlier suggestions, that SGR bursts are caused by neutron-star ‘crustquakes’ produced by magnetic stresses. The ‘magnetar’ birth rate is about one per millennium—a substantial fraction of that of radio pulsars. Thus our results may explain why some SNRs have no radio pulsars.


Nature | 1997

Spectral constraints on the redshift of the optical counterpart to the γ-ray burst of 8 May 1997

M. R. Metzger; Stan G. Djorgovski; S. R. Kulkarni; Charles C. Steidel; K. L. Adelberger; Dale A. Frail; E. Costa; F. Frontera

Brief, intense bursts of γ-rays occur approximately daily from random directions in space, but their origin has remained unknown since their initial detection almost 25 years ago. Arguments based on their observed isotropy and apparent brightness distribution are not sufficient to constrain the location of the bursts to a local or cosmological origin. The recent detection of a counterpart to a γ-ray burst at other wavelengths, has therefore raised the hope that the sources of these energetic events might soon be revealed. Here we report spectroscopic observations of the possible optical counterpart, to the γ-ray burst GRB970508. The spectrum is mostly featureless, except for a few prominent absorption lines which we attribute to the presence of an absorption system along the line of sight at redshift z = 0.835. Coupled with the absence of Lyman-α forest features in the spectra, our results imply that the optical transient lies at 0.835 ⩽ z [lsims] 2.3. If the optical transient is indeed the counterpart of GRB970508, our results provide the first direct limits on the distance to a γ-ray burst, confirming that at least some of these events lie at cosmological distances, and are thus highly energetic.


Nature | 1998

Radio emission from the unusual supernova 1998bw and its association with the gamma-ray burst of 25 April 1998

S. R. Kulkarni; Dale A. Frail; Mark Hendrik Wieringa; R. D. Ekers; Elaine M. Sadler; R. M. Wark; J. L. Higdon; E. S. Phinney; J. S. Bloom

Data accumulated over the past year strongly favour the idea that γ-ray bursts lie at cosmological distances, although the nature of the power source remains unclear. Here we report radio observations of the supernova SN1998bw, which exploded at about the same time, and in about the same direction, as the γ-ray burst GRB980425. At its peak, the supernova was unusually luminous at radio wavelengths. A simple interpretation of the data requires that the source expanded with an apparent velocity of at least twice the speed of light, indicating that the supernova was accompanied by a shock wave moving at relativistic speeds (the ejects of supernovae are typically characterized by non-relativistic velocities). The energy of the shock is at least 1049 erg, with an inferred ejecta mass of 10−5 solar masses, and we suggest that the early phase of this shock wave produced the burst of γ-rays. Although in general the properties of supernovae are very different from those of γ-ray bursts, we argue that this unusual supernova establishes a second class of γ-ray burst, which is distinctly different from the cosmological kind.


Nature | 2005

The afterglow of GRB 050709 and the nature of the short-hard gamma-ray bursts.

Derek B. Fox; Dale A. Frail; Paul A. Price; S. R. Kulkarni; Edo Berger; Tsvi Piran; Alicia M. Soderberg; S. B. Cenko; P. B. Cameron; Avishay Gal-Yam; Mansi M. Kasliwal; D.-S. Moon; Fiona A. Harrison; Ehud Nakar; Brian Paul Schmidt; Bryan E. Penprase; Roger A. Chevalier; Pawan Kumar; Kathy Roth; D. Watson; Brian Leverett Lee; Stephen A. Shectman; Mark M. Phillips; M. Roth; Patrick J. McCarthy; M Rauch; L. L. Cowie; Bruce A. Peterson; Joshua Rich; Nobuyuki Kawai

The final chapter in the long-standing mystery of the γ-ray bursts (GRBs) centres on the origin of the short-hard class of bursts, which are suspected on theoretical grounds to result from the coalescence of neutron-star or black-hole binary systems. Numerous searches for the afterglows of short-hard bursts have been made, galvanized by the revolution in our understanding of long-duration GRBs that followed the discovery in 1997 of their broadband (X-ray, optical and radio) afterglow emission. Here we present the discovery of the X-ray afterglow of a short-hard burst, GRB 050709, whose accurate position allows us to associate it unambiguously with a star-forming galaxy at redshift z = 0.160, and whose optical lightcurve definitively excludes a supernova association. Together with results from three other recent short-hard bursts, this suggests that short-hard bursts release much less energy than the long-duration GRBs. Models requiring young stellar populations, such as magnetars and collapsars, are ruled out, while coalescing degenerate binaries remain the most promising progenitor candidates.


Nature | 2006

Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions

Alicia M. Soderberg; S. R. Kulkarni; Ehud Nakar; Edo Berger; P. B. Cameron; Derek B. Fox; Dale A. Frail; Avishay Gal-Yam; R. Sari; S. B. Cenko; M. M. Kasliwal; R. A. Chevalier; Tsvi Piran; Paul A. Price; Brian Paul Schmidt; Guy G. Pooley; D.-S. Moon; Bryan E. Penprase; Eran O. Ofek; A. Rau; N. Gehrels; J. A. Nousek; D. N. Burrows; S. E. Persson; P. J. McCarthy

Over the past decade, long-duration γ-ray bursts (GRBs)—including the subclass of X-ray flashes (XRFs)—have been revealed to be a rare variety of type Ibc supernova. Although all these events result from the death of massive stars, the electromagnetic luminosities of GRBs and XRFs exceed those of ordinary type Ibc supernovae by many orders of magnitude. The essential physical process that causes a dying star to produce a GRB or XRF, and not just a supernova, is still unknown. Here we report radio and X-ray observations of XRF 060218 (associated with supernova SN 2006aj), the second-nearest GRB identified until now. We show that this event is a hundred times less energetic but ten times more common than cosmological GRBs. Moreover, it is distinguished from ordinary type Ibc supernovae by the presence of 1048 erg coupled to mildly relativistic ejecta, along with a central engine (an accretion-fed, rapidly rotating compact source) that produces X-rays for weeks after the explosion. This suggests that the production of relativistic ejecta is the key physical distinction between GRBs or XRFs and ordinary supernovae, while the nature of the central engine (black hole or magnetar) may distinguish typical bursts from low-luminosity, spherical events like XRF 060218.


Nature | 1999

The unusual afterglow of the γ-ray burst of 26 March 1998 as evidence for a supernova connection

J. S. Bloom; S. R. Kulkarni; S. G. Djorgovski; A.C. Eichelberger; Patrick Cote; John P. Blakeslee; S. C. Odewahn; Fiona A. Harrison; Dale A. Frail; A. V. Filippenko; Douglas C. Leonard; Adam G. Riess; Hyron Spinrad; D. Stern; Andrew J. Bunker; Arjun Dey; B. Grossan; S. Perlmutter; R. A. Knop; I. M. Hook; M. Feroci

Cosmic γ-ray bursts have now been firmly established as one of the most powerful phenomena in the Universe, releasing almost the rest-mass energy of a neutron star within the space of a few seconds (ref. 1). The two most popular models to explain γ-ray bursts are the coalescence of two compact objects such as neutron stars or black holes, or the catastrophic collapse of a massive star in a very energetic supernova-like explosion. Here we show that, about three weeks after the γ-ray burst of 26 March 1998, the transient optical source associated with the burst brightened to about 60 times the expected flux, based upon an extrapolation of the initial light curve. Moreover, the spectrum changed dramatically, with the colour becoming extremely red. We argue that the new source is an underlying supernova. If our hypothesis is true then this provides evidence linking cosmologically located γ-ray bursts with deaths of massive stars.Palomar Observatory 105-24, Caltech, Pasadena, CA 91125, USA National Radio Astronomy Observatory, P. O. Box O, Socorro, NM 87801, USA Department of Astronomy, University of California, Berkeley, CA 94720-3411 USA National Optical Astronomy Observatories, 950 N. Cherry, Ave. Tucson, AZ 85719, USA Institute of Geophysics and Planetary Physics, Lawrence Livermore National Laboratory, 7000 East Avenue, P. O. Box 808, L-413, Livermore, CA 94551-9900, USA Center for Particle Astrophysics, University of California, Berkeley, CA 94720 USA Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA European Southern Observatory, D-85748 Garching, Germany Istituto di Astrofisica Spaziale, CNR, via Fosso del Cavaliere, Roma I-00133, Italy


Nature | 1999

The afterglow, redshift and extreme energetics of the gamma-ray burst of 23 January 1999

Kulkarni; S. G. Djorgovski; S. C. Odewahn; J. S. Bloom; Roy R. Gal; C. Koresko; Fiona A. Harrison; Lm Lubin; Lee Armus; Re'em Sari; Gd Illingworth; Daniel D. Kelson; Dk Magee; Pg van Dokkum; Dale A. Frail; Js Mulchaey; Ma Malkan; Is McClean; Hi Teplitz; David William Koerner; D. Kirkpatrick; Naoto Kobayashi; Ia Yadigaroglu; Jules P. Halpern; Tsvi Piran; Rw Goodrich; Fh Chaffee; M. Feroci; Enrico Costa

Long-lived emission, known as afterglow, has now been detected from about a dozen γ-ray bursts. Distance determinations place the bursts at cosmological distances, with redshifts, z, ranging from ∼1 to 3. The energy required to produce these bright γ-ray flashes is enormous: up to ∼10 53 erg, or 10 per cent of the rest-mass energy of a neutron star, if the emission is isotropic. Here we present optical and near-infrared observations of the afterglow of GRB990123, and we determine a redshift of z ⩾ 1.6. This is to date the brightest γ-ray burst with a well-localized position and if the γ-rays were emitted isotropically, the energy release exceeds the rest-mass energy of a neutron star, so challenging current theoretical models of the sources. We argue, however, that our data may provide evidence of beamed (rather than isotropic) radiation, thereby reducing the total energy released to a level where stellar-death models are still tenable.Afterglow, or long-lived emission, has now been detected from about a dozen well-positioned gamma-ray bursts. Distance determinations made by measuring optical emission lines from the host galaxy, or absorption lines in the afterglow spectrum, place the burst sources at significant cosmological distances, with redshifts ranging from ~1--3. The energy required to produce the bright gamma-ray flashes is enormous: up to ~10^{53} erg or 10 percent of the rest mass energy of a neutron star, if the emission is isotropic. Here we present the discovery of the optical afterglow and the redshift of GRB 990123, the brightest well-localized GRB to date. With our measured redshift of >1.6, the inferred isotropic energy release exceeds the rest mass of a neutron star thereby challenging current theoretical models for the origin of GRBs. We argue that the optical and IR afterglow measurements reported here may provide the first observational evidence of beaming in a GRB, thereby reducing the required energetics to a level where stellar death models are still tenable.


arXiv: Astrophysics | 1999

The afterglow, the redshift, and the extreme energetics of the gamma-ray burst 990123

S. R. Kulkarni; S. G. Djorgovski; S. C. Odewahn; J. S. Bloom; Roy R. Gal; C. Koresko; Fiona A. Harrison; Lm Lubin; Lee Armus; Re'em Sari; G. D. Illingworth; D. D. Kelson; D. Magee; P. G. van Dokkum; Dale A. Frail; Js Mulchaey; Ma Malkan; I. S. McLean; Hi Teplitz; David William Koerner; D. Kirkpatrick; Naoto Kobayashi; Ia Yadigaroglu; J. P. Halpern; Tsvi Piran; Rw Goodrich; Fh Chaffee; M. Feroci; Enrico Costa

Long-lived emission, known as afterglow, has now been detected from about a dozen γ-ray bursts. Distance determinations place the bursts at cosmological distances, with redshifts, z, ranging from ∼1 to 3. The energy required to produce these bright γ-ray flashes is enormous: up to ∼10 53 erg, or 10 per cent of the rest-mass energy of a neutron star, if the emission is isotropic. Here we present optical and near-infrared observations of the afterglow of GRB990123, and we determine a redshift of z ⩾ 1.6. This is to date the brightest γ-ray burst with a well-localized position and if the γ-rays were emitted isotropically, the energy release exceeds the rest-mass energy of a neutron star, so challenging current theoretical models of the sources. We argue, however, that our data may provide evidence of beamed (rather than isotropic) radiation, thereby reducing the total energy released to a level where stellar-death models are still tenable.Afterglow, or long-lived emission, has now been detected from about a dozen well-positioned gamma-ray bursts. Distance determinations made by measuring optical emission lines from the host galaxy, or absorption lines in the afterglow spectrum, place the burst sources at significant cosmological distances, with redshifts ranging from ~1--3. The energy required to produce the bright gamma-ray flashes is enormous: up to ~10^{53} erg or 10 percent of the rest mass energy of a neutron star, if the emission is isotropic. Here we present the discovery of the optical afterglow and the redshift of GRB 990123, the brightest well-localized GRB to date. With our measured redshift of >1.6, the inferred isotropic energy release exceeds the rest mass of a neutron star thereby challenging current theoretical models for the origin of GRBs. We argue that the optical and IR afterglow measurements reported here may provide the first observational evidence of beaming in a GRB, thereby reducing the required energetics to a level where stellar death models are still tenable.

Collaboration


Dive into the Dale A. Frail's collaboration.

Top Co-Authors

Avatar

S. R. Kulkarni

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

P. Chandra

National Centre for Radio Astrophysics

View shared research outputs
Top Co-Authors

Avatar

Edo Berger

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

J. S. Bloom

University of California

View shared research outputs
Top Co-Authors

Avatar

Fiona A. Harrison

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Avishay Gal-Yam

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Mansi M. Kasliwal

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Eran O. Ofek

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Re'em Sari

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge