Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dale J. Fixsen is active.

Publication


Featured researches published by Dale J. Fixsen.


Astrophysical Journal Supplement Series | 2004

The Infrared Array Camera (IRAC) for the Spitzer Space Telescope

Giovanni G. Fazio; Joseph L. Hora; Lori E. Allen; M. L. N. Ashby; Pauline Barmby; Lynne K. Deutsch; Jia-Sheng Huang; S. C. Kleiner; Massimo Marengo; S. T. Megeath; Gary J. Melnick; Michael Andrew Pahre; Brian M. Patten; J. Polizotti; H. A. Smith; R. S. Taylor; Zhong Wang; Steven P. Willner; William F. Hoffmann; Judith L. Pipher; William J. Forrest; C. W. McMurty; Craig R. McCreight; Mark E. McKelvey; Robert E. McMurray; David G. Koch; S. H. Moseley; Richard G. Arendt; John Eric Mentzell; Catherine T. Marx

The Infrared Array Camera (IRAC) is one of three focal plane instruments on the Spitzer Space Telescope. IRAC is a four-channel camera that obtains simultaneous broadband images at 3.6, 4.5, 5.8, and 8.0 � m. Two nearly adjacent 5A2 ; 5A2 fields of view in the focal plane are viewed by the four channels in pairs (3.6 and 5.8 � m; 4.5 and 8 � m). All four detector arrays in the camera are 256 ; 256 pixels in size, with the two shorter wavelength channels using InSb and the two longer wavelength channels using Si:As IBC detectors. IRAC is a powerful survey instrument because of its high sensitivity, large field of view, and four-color imaging. This paper summarizes the in-flight scientific, technical, and operational performance of IRAC.


The Astrophysical Journal | 1996

The Cosmic Microwave Background spectrum from the full COBE FIRAS data set

Dale J. Fixsen; E. S. Cheng; Joel M. Gales; John C. Mather; Richard A. Shafer; E. L. Wright

We have refined the analysis of the data from the FIRAS (Far-InfraRed Absolute Spectrophotometer) on board the COBE (COsmic Background Explorer). The FIRAS measures the difference between the cosmic microwave background and a precise blackbody spectrum. We find new, tighter upper limits on general deviations from a blackbody spectrum. The rms deviations are less than 50 parts per million of the peak of the cosmic microwave background radiation. For the Comptonization and chemical potential, we find |y| < 15 × 10–6 and |μ| < 9 × 10–5 (95% confidence level [CL]). There are also refinements in the absolute temperature, 2.728 ± 0.004 K (95% CL), the dipole direction, (1, b)/(26414 ± 0.30, 4826 ± 0.30) (95% CL), and the amplitude, 3.372 ± 0.014 mK (95% CL). All of these results agree with our previous publications.


The Astrophysical Journal | 1994

MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND SPECTRUM BY THE COBE FIRAS INSTRUMENT

John C. Mather; Edward S. Cheng; David A. Cottingham; Robert Eugene Eplee; Dale J. Fixsen; Tilak Hewagama; Richard Bruce Isaacman; Kathleen Jensen; S. S. Meyer; Peter D. Noerdlinger; S. M. Read; L. P. Rosen; Richard A. Shafer; Edward L. Wright; C. L. Bennett; N. W. Boggess; Michael G. Hauser; T. Kelsall; S. H. Moseley; R. F. Silverberg; George F. Smoot; Rainer Weiss; D. T. Wilkinson

The cosmic microwave background radiation (CMBR) has a blackbody spectrum within 3.4 x 10(exp -8) ergs/sq cm/s/sr cm over the frequency range from 2 to 20/cm (5-0.5 mm). These measurements, derived from the Far-Infrared Absolute Spectrophotomer (FIRAS) instrument on the Cosmic Background Explorer (COBE) satellite, imply stringent limits on energy release in the early universe after t approximately 1 year and redshift z approximately 3 x 10(exp 6). The deviations are less than 0.30% of the peak brightness, with an rms value of 0.01%, and the dimensionless cosmological distortion parameters are limited to the absolute value of y is less than 2.5 x 10(exp -5) and the absolute value of mu is less than 3.3 x 10(exp -4) (95% confidence level). The temperature of the CMBR is 2.726 +/- 0.010 K (95% confidence level systematic).


The Astrophysical Journal | 2009

The Temperature of the Cosmic Microwave Background

Dale J. Fixsen

The Far InfraRed Absolute Spectrophotometer data are independently recalibrated using the Wilkinson Microwave Anisotropy Probe data to obtain a cosmic microwave background (CMB) temperature of 2.7260 ± 0.0013. Measurements of the temperature of the CMB are reviewed. The determination from the measurements from the literature is CMB temperature of 2.72548 ± 0.00057 K.


Journal of Cosmology and Astroparticle Physics | 2011

The Primordial Inflation Explorer (PIXIE): A Nulling Polarimeter for Cosmic Microwave Background Observations

A. Kogut; Dale J. Fixsen; David T. Chuss; Jessie L. Dotson; E. Dwek; M. Halpern; G. Hinshaw; S. M. Meyer; S. H. Moseley; M. Seiffert; David N. Spergel; Edward J. Wollack

The Primordial Inflation Explorer (PIXIE) is a concept for an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. The instrument consists of a polarizing Michelson interferometer configured as a nulling polarimeter to measure the difference spectrum between orthogonal linear polarizations from two co-aligned beams. Either input can view the sky or a temperature-controlled absolute reference blackbody calibrator. Rhe proposed instrument can map the absolute intensity and linear polarization (Stokes I, Q, and U parameters) over the full sky in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 μm wavelength). Multi-moded optics provide background-limited sensitivity using only 4 detectors, while the highly symmetric design and multiple signal modulations provide robust rejection of potential systematic errors. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10−3 at 5 standard deviations. The rich PIXIE data set can also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy.


The Astrophysical Journal | 1993

Dipole anisotropy in the COBE DMR first year sky maps

A. Kogut; C. Lineweaver; George F. Smoot; C. L. Bennett; A. J. Banday; N. W. Boggess; Edward S. Cheng; G. De Amici; Dale J. Fixsen; G. Hinshaw; P. D. Jackson; Michael A. Janssen; P. Keegstra; K. Loewenstein; P. M. Lubin; John C. Mather; L. Tenorio; Ron Weiss; D. T. Wilkinson; E. L. Wright

We present a determination of the cosmic microwave background dipole amplitude and direction from the COBE Differential Microwave Radiometers (DMR) first year of data. Data from the six DMR channels are consistent with a Doppler-shifted Planck function of dipole amplitude ΔT=3.365±0.027 mK toward direction (l II , b II )=(264°.4±0°.3, 48°.4±0°.5). The implied velocity of the Local Group with respect to the CMB rest frame is v LG =627±22 km s −1 toward (l II , b II )=(276°±3°, 30°±3°). DMR has also mapped the dipole anisotropy resulting from the Earths orbital motion about the Solar system barycenter, yielding a measurement of the monopole CMB temperature T 0 at 31.5, 53, and 90 GHz, T 0 =2.75±0.05 KWe present a determination of the cosmic microwave background dipole amplitude and direction from the COBE Differential Microwave Radiometers (DMR) first year of data. Data from the six DMR channels are consistent with a Doppler-shifted Planck function of dipole amplitude Delta T = 3.365 +/-0.027 mK toward direction (l,b) = (264.4 +/- 0.3 deg, 48.4 +/- 0.5 deg). The implied velocity of the Local Group with respect to the CMB rest frame is 627 +/- 22 km/s toward (l,b) = (276 +/- 3 deg, 30 +/- 3 deg). DMR has also mapped the dipole anisotropy resulting from the Earths orbital motion about the Solar system barycenter, yielding a measurement of the monopole CMB temperature at 31.5, 53, and 90 GHz, to be 2.75 +/- 0.05 K.


The Astrophysical Journal | 1995

Far-infrared spectral observations of the galaxy by COBE

William T. Reach; E. Dwek; Dale J. Fixsen; Tilak Hewagama; John C. Mather; Richard A. Shafer; A. J. Banday; C. L. Bennett; E. S. Cheng; Robert Eugene Eplee; D. Leisawi tz; P. M. Lubin; S. M. Read; L. P. Rosen; F.G.D. Shuman; George F. Smoot; T.J. Sodroski; E. L. Wright

We derive Galactic continuum spectra from 5-96 cm(-1) fromCOBE/FIRAS observations. The spectra are dominated by warm dust emission,which may be fitted with a single temperature in the range 16-21 K (fornu(2) emissivity) along each line of sight. Dust heated by the attenuatedradiation field in molecular clouds gives rise tointermediate-temperature (10-14 K) emission in the inner Galaxy only. Awidespread, very cold component (4-7 K) with optical depth that isspatially correlated with the warm component is also detected. The coldcomponent is unlikely to be due to very cold dust shielded from starlightbecause it is present at high latitude. We consider hypotheses that thecold component is due to enhanced submillimeter emissivity of the dustthat gives rise to the warm component, or that it may be due to verysmall, large, or fractal particles. Lack of substantial power above theemission from warm dust places strong constraints on the amount of coldgas in the Galaxy. The microwave sky brightness due to interstellar dustis dominated by the cold component, and its angular variation could limitour ability to discern primordial fluctuations in the cosmic microwavebackground radiation.


The Astrophysical Journal | 1997

Detection and Characterization of Cold Interstellar Dust and Polycyclic Aromatic Hydrocarbon Emission, from COBE Observations

E. Dwek; Richard G. Arendt; Dale J. Fixsen; T. J. Sodroski; N. Odegard; J. L. Weiland; William T. Reach; Michael G. Hauser; T. Kelsall; S. H. Moseley; R. F. Silverberg; Richard A. Shafer; J. Ballester; D. Bazell; R. Isaacman

Using data obtained by the DIRBE instrument on the COBE spacecraft, we present the mean 3.5-240 μm spectrum of high-latitude dust. Combined with a spectrum obtained by the FIRAS instrument, these data represent the most comprehensive wavelength coverage of dust in the diffuse interstellar medium, spanning the 3.5-1000 μm wavelength regime. At wavelengths shorter than ~60 μm the spectrum shows an excess of emission over that expected from dust heated by the local interstellar radiation field and radiating at an equilibrium temperature. The DIRBE data thus extend the observations of this excess, first detected by the IRAS satellite at 25 and 12 μm, to shorter wavelengths. The excess emission arises from very small dust particles undergoing temperature fluctuations. However, the 3.5-4.9 μm intensity ratio cannot be reproduced by very small silicate or graphite grains. The DIRBE data strongly suggest that the 3.5-12 μm emission is produced by carriers of the ubiquitous 3.3, 6.2, 7.7, 8.6, and 11.3 μm solid state emission features that have been detected in a wide variety of astrophysical objects. The carriers of these features have been widely identified with polycyclic aromatic hydrocarbons (PAHs). Our dust model consists of a mixture of PAH molecules and bare astronomical silicate and graphite grains with optical properties given by Draine & Lee. We obtain a very good fit to the DIRBE spectrum, deriving the size distribution, abundances relative to the total hydrogen column density, and relative contribution of each dust component to the observed IR emission. At wavelengths above 140 μm the model is dominated by emission from T ≈ 17-20 K graphite and 15-18 K silicate grains. The model provides a good fit to the FIRAS spectrum in the 140-500 μm wavelength regime but leaves an excess Galactic emission component at 500-1000 μm. The nature of this component is still unresolved. We find that (C/H) is equal to (7.3 ± 2.2) × 10-5 for PAHs and equal to (2.5 ± 0.8) × 10-4 for graphite grains, requiring about 20% of the cosmic abundance of carbon to be locked up in PAHs, and about 70% in graphite grains [we adopt (C/H)☉ = 3.6 × 10-4]. The model also requires all of the available magnesium, silicon, and iron to be locked up in silicates. The power emitted by PAHs is 1.6 × 10-31 W per H atom, by graphite grains 3.0 × 10-31 W per H atom, and by silicates 1.4 × 10-31 W per H atom, adding up to a total infrared intensity of 6.0 × 10-31 W per H atom, or ~2 L☉ M. The [C II] 158 μm line emission detected by the FIRAS provides important information on the gas phase abundance of carbon in the diffuse ISM. The 158 μm line arises predominantly from the cold neutral medium (CNM) and shows that for typical CNM densities and temperatures C+/H = (0.5-1.0) × 10-4, which is ~14%-28% of the cosmic carbon abundance. The remaining carbon abundance in the CNM, which must be locked up in dust, is about equal to that required to provide the observed IR emission, consistent with notion that most (75%) of this emission arises from the neutral component of the diffuse ISM. The model provides a good fit to the general interstellar extinction curve. However, at UV wavelengths it predicts a larger extinction. The excess extinction may be the result of the UV properties adopted for the PAHs. If real, the excess UV extinction may be accounted for by changes in the relative abundances of PAHs and carriers of the 2200 A extinction bump.


The Astrophysical Journal | 1994

Morphology of the interstellar cooling lines detected by COBE

C. L. Bennett; Dale J. Fixsen; G. Hinshaw; John C. Mather; S. H. Moseley; E. L. Wright; Robert Eugene Eplee; J. Gales; Tilak Hewagama; Richard Bruce Isaacman

The Far-Infrared Absolute Spectrophotometer (FIRAS) on the COBE satellite has conducted an unbiased survey of the far-infrared emission from our Galaxy. The first results of this survey were reported by Wright et al. (1991). We report the results of new analyses of this spectral survey, which includes emission lines from 158 micrometer C(+), 122 and 205 micrometer N(+), 370 and 609 micrometer C(0), and CO J = 2 goes to 1 through J = 5 goes to 4. We report the morphological distribution along the Galactic plane (b = 0 deg) of the spectral line emission, and the high Galactic latitude intensities of the C(+) and 205 micrometer N(+) emission. In the Galactic plane the 205 micrometer line of N(+) generally follows the 158 micrometer C(+) line distribution, but the intensities scale as I(N(+) 205 micrometer) varies as I(C(+) 158 micrometer)(exp 1.5) toward the inner Galaxy. The high Galactic latitude intensity of the 158 micrometer fine-structure transition from C(+) is I(C(+) 158 micrometer) = (1.43 +/- 0.12) x 10(exp -6) csc (absolute value of b) ergs/sq cm s sr for absolute value of b greater than 15 deg, and it decreases more rapidly than the far-infrared intensity with increasing Galactic latitude. C(+) and neutral atomic hydrogen emission are closely correlated with a C(+) cooling rate of (2.65 +/- 0.15) x 10(exp -26) ergs/s. We conclude that this emission arises almost entirely from the cold neutral medium. The high Galactic latitude intensity of the 205 micrometer fine-structure transition from N(+) is I(N(+) 205 micrometer) = (4 +/- 1) x 10(exp -8) csc (absolute value of b) ergs/((sq cm)(s)(sr)) arising entirely from the warm ionized medium. We estimate the total ionizing photon rate in the Galaxy to be phi = 3.5 x 10(exp 53) ionizing photons per second, based on the 205 micrometer N(+) transition.


The Astrophysical Journal | 2002

The Spectral Results of the Far-Infrared Absolute Spectrophotometer Instrument on COBE

Dale J. Fixsen; John C. Mather

The cosmic microwave background (CMB) spectral results of the Far-Infrared Absolute Spectrophotometer (FIRAS) instrument are summarized. Some questions that have been raised about the calibration accuracy are also addressed. Finally, we comment on the potential for major improvements with new measurement approaches. The measurement of the deviation of the CMB spectrum from a 2.725 ± 0.001 K blackbody form made by the COBE-FIRAS could be improved by nearly 2 orders of magnitude.

Collaboration


Dive into the Dale J. Fixsen's collaboration.

Top Co-Authors

Avatar

A. Kogut

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

R. F. Silverberg

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Edward J. Wollack

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dominic J. Benford

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

S. H. Moseley

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Mirel

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Elmer H. Sharp

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

E. S. Cheng

Goddard Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge