Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dale Porter is active.

Publication


Featured researches published by Dale Porter.


Nature | 2010

The landscape of somatic copy-number alteration across human cancers

Rameen Beroukhim; Craig H. Mermel; Dale Porter; Guo Wei; Soumya Raychaudhuri; Jerry Donovan; Jordi Barretina; Jesse S. Boehm; Jennifer Dobson; Mitsuyoshi Urashima; Kevin T. Mc Henry; Reid M. Pinchback; Azra H. Ligon; Yoon-Jae Cho; Leila Haery; Heidi Greulich; Michael R. Reich; Wendy Winckler; Michael S. Lawrence; Barbara A. Weir; Kumiko Tanaka; Derek Y. Chiang; Adam J. Bass; Alice Loo; Carter Hoffman; John R. Prensner; Ted Liefeld; Qing Gao; Derek Yecies; Sabina Signoretti

A powerful way to discover key genes with causal roles in oncogenesis is to identify genomic regions that undergo frequent alteration in human cancers. Here we present high-resolution analyses of somatic copy-number alterations (SCNAs) from 3,131 cancer specimens, belonging largely to 26 histological types. We identify 158 regions of focal SCNA that are altered at significant frequency across several cancer types, of which 122 cannot be explained by the presence of a known cancer target gene located within these regions. Several gene families are enriched among these regions of focal SCNA, including the BCL2 family of apoptosis regulators and the NF-κΒ pathway. We show that cancer cells containing amplifications surrounding the MCL1 and BCL2L1 anti-apoptotic genes depend on the expression of these genes for survival. Finally, we demonstrate that a large majority of SCNAs identified in individual cancer types are present in several cancer types.


Cancer Research | 2007

A Smac Mimetic Rescue Screen Reveals Roles for Inhibitor of Apoptosis Proteins in Tumor Necrosis Factor-α Signaling

Alex Gaither; Dale Porter; Yao Yao; Jason Borawski; Guang Yang; Jerry Donovan; David Sage; Joanna Slisz; Mary Tran; Christopher Sean Straub; Tim Ramsey; Vadim Iourgenko; Alan Huang; Yan Chen; Robert Schlegel; Mark Labow; Stephen E. Fawell; William R. Sellers; Leigh Zawel

Smac mimetic compounds targeting the inhibitor of apoptosis proteins (IAP) baculoviral IAP repeat-3 domain are presumed to reduce the threshold for apoptotic cell death by alleviating caspase-9 repression. We explored this tenet in an unbiased manner by searching for small interfering RNAs that are able to confer resistance to the Smac mimetic compound LBW242. Among the screening hits were multiple components of the tumor necrosis factor alpha (TNFalpha) signaling pathway as well as X-linked inhibitor of apoptosis (XIAP) itself. Here, we show that in a subset of highly sensitive tumor cell lines, activity of LBW242 is dependent on TNFalpha signaling. Mechanistic studies indicate that in this context, XIAP is a positive modulator of TNFalpha induction whereas cellular inhibitor of apoptosis protein 1 negatively regulates TNFalpha-mediated apoptosis.


Proceedings of the National Academy of Sciences of the United States of America | 2001

HIN-1, a putative cytokine highly expressed in normal but not cancerous mammary epithelial cells

Ian E. Krop; Dennis C. Sgroi; Dale Porter; Kathryn L. Lunetta; Rebbecca LeVangie; Pankaj Seth; Carolyn M. Kaelin; Esther Rhei; Marcus Bosenberg; Stuart J. Schnitt; Jeffrey R. Marks; Zrinka Pagon; Drazen Belina; Jasminka Razumovic; Kornelia Polyak

To identify molecular alterations implicated in the initiating steps of breast tumorogenesis, we compared the gene expression profiles of normal and ductal carcinoma in situ (DCIS) mammary epithelial cells by using serial analysis of gene expression (SAGE). Through the pair-wise comparison of normal and DCIS SAGE libraries, we identified several differentially expressed genes. Here, we report the characterization of one of these genes, HIN-1 (high in normal-1). HIN-1 expression is significantly down regulated in 94% of human breast carcinomas and in 95% of preinvasive lesions, such as ductal and lobular carcinoma in situ. This decrease in HIN-1 expression is accompanied by hypermethylation of its promoter in the majority of breast cancer cell lines (>90%) and primary tumors (74%). HIN-1 is a putative cytokine with no significant homology to known proteins. Reintroduction of HIN-1 into breast cancer cells inhibits cell growth. These results indicate that HIN-1 is a candidate tumor suppressor gene that is inactivated at high frequency in the earliest stages of breast tumorogenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2013

BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition

Rizwan Haq; Satoru Yokoyama; Elena B. Hawryluk; Göran Jönsson; Dennie T. Frederick; Kevin T. McHenry; Dale Porter; Thanh Nga Tran; Kevin Love; Robert Langer; Daniel G. Anderson; Levi A. Garraway; Lyn M. Duncan; Donald L. Morton; Dave S.B. Hoon; Jennifer A. Wargo; Jun S. Song; David E. Fisher

Although targeting oncogenic mutations in the BRAF serine/threonine kinase with small molecule inhibitors can lead to significant clinical responses in melanoma, it fails to eradicate tumors in nearly all patients. Successful therapy will be aided by identification of intrinsic mechanisms that protect tumor cells from death. Here, we used a bioinformatics approach to identify drug-able, “driver” oncogenes restricted to tumor versus normal tissues. Applying this method to 88 short-term melanoma cell cultures, we show that the antiapoptotic BCL2 family member BCL2A1 is recurrently amplified in ∼30% of melanomas and is necessary for melanoma growth. BCL2A1 overexpression also promotes melanomagenesis of BRAF-immortalized melanocytes. We find that high-level expression of BCL2A1 is restricted to melanoma due to direct transcriptional control by the melanoma oncogene MITF. Although BRAF inhibitors lead to cell cycle arrest and modest apoptosis, we find that apoptosis is significantly enhanced by suppression of BCL2A1 in melanomas with BCL2A1 or MITF amplification. Moreover, we find that BCL2A1 expression is associated with poorer clinical responses to BRAF pathway inhibitors in melanoma patients. Cotreatment of melanomas with BRAF inhibitors and obatoclax, an inhibitor of BCL2A1 and other BCL2 family members, overcomes intrinsic resistance to BRAF inhibitors in BCL2A1-amplified cells in vitro and in vivo. These studies identify MITF-BCL2A1 as a lineage-specific oncogenic pathway in melanoma and underscore its role for improved response to BRAF-directed therapy.


Proceedings of the National Academy of Sciences of the United States of America | 2003

A neural survival factor is a candidate oncogene in breast cancer

Dale Porter; Stanislawa Weremowicz; Koei Chin; Pankaj Seth; Aparna Keshaviah; Jaana Lahti-Domenici; Young Kyung Bae; Constance L. Monitto; Ana Merlos-Suarez; Jennifer A. Chan; Christine M. Hulette; Andrea L. Richardson; Cynthia C. Morton; Jeffrey R. Marks; Mabel P. Duyao; Ralph H. Hruban; Edward Gabrielson; Rebecca Gelman; Kornelia Polyak

Using serial analysis of gene expression (SAGE), we identified a SAGE tag that was present only in invasive breast carcinomas and their lymph node metastases. The transcript corresponding to this SAGE tag, dermcidin (DCD), encodes a secreted protein normally expressed only in the pons of the brain and sweat glands. Array comparative genomic hybridization, fluorescence in situ hybridization, and immunohistochemical analyses determined that DCD is overexpressed in ≈10% of invasive breast carcinomas; in some cases its overexpression is coupled with a focal copy number gain of its locus at 12q13.1, and its expression is associated with advanced clinical stage and poor prognosis. Expression of DCD in breast cancer cells promotes cell growth and survival and reduces serum dependency. Putative high- and low-affinity receptors for DCD are present on the cell surface of breast carcinomas and neurons of the brain. Based on these data we hypothesize that DCD may play a role in tumorigenesis by means of enhancing cell growth and survival in a subset of breast carcinomas.


Oncogene | 2002

Novel estrogen and tamoxifen induced genes identified by SAGE (Serial Analysis of Gene Expression).

Pankaj Seth; Ian E. Krop; Dale Porter; Kornelia Polyak

The breast cancer promoting effects of estrogen and the chemopreventive effects of tamoxifen are thought to be mediated by the estrogen receptor, a ligand-dependent transcription factor. Therefore, comprehensive analysis of gene expression profiles following estrogen or tamoxifen treatment may help us better understand the role estrogen plays in tumorigenesis. We utilized SAGE (Serial Analysis of Gene Expression) technology to identify genes regulated by estrogen and tamoxifen in the ZR75-1 estrogen dependent breast cancer cell line. In this manner we have identified several genes that were regulated by estrogen or tamoxifen. Here we report the identification and initial characterization of EIT-6 (Estrogen Induced Tag-6), a novel nuclear protein and a new member of the evolutionarily conserved SM-20 family of growth regulatory immediate-early genes. EIT-6 appears to be a direct transcriptional target of the estrogen receptor and constitutive expression of EIT-6 promotes colony growth in human breast cancer cells. These data indicate that EIT-6 may play a role in estrogen induced cell growth.


Oncogene | 2014

Combined PKC and MEK inhibition in uveal melanoma with GNAQ and GNA11 mutations

Xu Chen; Qiuxia Wu; Lujian Tan; Dale Porter; Martine J. Jager; Caroline Emery; Boris C. Bastian

Uveal melanoma (UM) is a genetically and biologically distinct type of melanoma, and once metastatic there is no effective treatment currently available. Eighty percent of UMs harbor mutations in the Gαq family members GNAQ and GNA11. Understanding the effector pathways downstream of these oncoproteins is important to identify opportunities for targeted therapy. We report consistent activation of the protein kinase C (PKC) and MAPK pathways as a consequence of GNAQ or GNA11 mutation. PKC inhibition with AEB071 or AHT956 suppressed PKC and MAPK signalling and induced G1 arrest selectively in melanoma cell lines carrying GNAQ or GNA11 mutations. In contrast, treatment with two different MEK inhibitors, PD0325901 and MEK162, inhibited the proliferation of melanoma cell lines irrespective of their mutation status, indicating that in the context of GNAQ or GNA11 mutation MAPK activation can be attributed to activated PKC. AEB071 significantly slowed the growth of tumors in an allograft model of GNAQQ209L-transduced melanocytes, but did not induce tumor shrinkage. In vivo and in vitro studies showed that PKC inhibitors alone were unable to induce sustained suppression of MAP-kinase signaling. However, combinations of PKC and MEK inhibition, using either PD0325901or MEK162, led to sustained MAP-kinase pathway inhibition and showed a strong synergistic effect in halting proliferation and in inducing apoptosis in vitro. Furthermore, combining PKC and MEK inhibition was efficacious in vivo, causing marked tumor regression in a UM xenograft model. Our data identify PKC as a rational therapeutic target for melanoma patients with GNAQ or GNA11 mutations and demonstrate that combined MEK and PKC inhibition is synergistic, with superior efficacy compared to treatment with either approach alone.


Journal of Clinical Oncology | 2017

Evaluation of BGJ398, a Fibroblast Growth Factor Receptor 1-3 Kinase Inhibitor, in Patients With Advanced Solid Tumors Harboring Genetic Alterations in Fibroblast Growth Factor Receptors: Results of a Global Phase I, Dose-Escalation and Dose-Expansion Study

Lucia Nogova; Lecia V. Sequist; Jose Manuel Perez Garcia; Fabrice Andre; Jean-Pierre Delord; Manuel Hidalgo; Jan H. M. Schellens; Philippe Cassier; D. Ross Camidge; Martin Schuler; Ulka N. Vaishampayan; Howard A. Burris; G. Gary Tian; Mario Campone; Zev A. Wainberg; Wan-Teck Lim; Patricia LoRusso; Geoffrey I. Shapiro; Katie Parker; Xueying Chen; Somesh Choudhury; Francois Ringeisen; Diana Graus-Porta; Dale Porter; Randi Isaacs; Reinhard Buettner; Jürgen Wolf

Purpose This two-part, first-in-human study was initiated in patients with advanced solid tumors harboring genetic alterations in fibroblast growth factor receptors (FGFRs) to determine the maximum tolerated dose (MTD), the recommended phase II dose (RP2D), and the schedule, safety, pharmacokinetics, pharmacodynamics, and antitumor activity of oral BGJ398, a selective FGFR1-3 tyrosine kinase inhibitor. Patients and Methods Adult patients were treated with escalating dosages of BGJ398 5 to 150 mg once daily or 50 mg twice daily continuously in 28-day cycles. During expansion at the MTD, patients with FGFR1-amplified squamous cell non-small-cell lung cancer (sqNSCLC; arm 1) or other solid tumors with FGFR genetic alterations (mutations/amplifications/fusions) received BGJ398 daily on a continuous schedule (arm 2), or on a 3-weeks-on/1-week-off schedule (arm 3). Results Data in 132 patients from the escalation and expansion arms are reported (May 15, 2015, cutoff). The MTD, 125 mg daily, was determined on the basis of dose-limiting toxicities in four patients (100 mg, grade 3 aminotransferase elevations [n = 1]; 125 mg, hyperphosphatemia [n = 1]; 150 mg, grade 1 corneal toxicity [n = 1] and grade 3 aminotransferase elevations [n = 1]). Common adverse events in patients treated at the MTD (n = 57) included hyperphosphatemia (82.5%), constipation (50.9%), decreased appetite (45.6%), and stomatitis (45.6%). A similar safety profile was observed using the 3-weeks-on/1-week-off schedule (RP2D). However, adverse event-related dose adjustments/interruptions were less frequent with the 3-weeks-on/1-week-off (50.0%) versus the continuous (73.7%) schedule. Antitumor activity (seven partial responses [six confirmed]) was demonstrated with BGJ398 doses ≥ 100 mg in patients with FGFR1-amplified sqNSCLC and FGFR3-mutant bladder/urothelial cancer. Conclusion BGJ398 at the MTD/RP2D had a tolerable and manageable safety profile and showed antitumor activity in several tumor types, including FGFR1-amplified sqNSCLC and FGFR3-mutant bladder/urothelial cancers.


Journal of Experimental Medicine | 2010

IAP inhibitors enhance co-stimulation to promote tumor immunity

Michael Dougan; Stephanie K. Dougan; Joanna Slisz; Brant Firestone; Matthew Vanneman; Dobrin Draganov; Girija Goyal; Weibo Li; Donna Neuberg; Richard S. Blumberg; Nir Hacohen; Dale Porter; Leigh Zawel; Glenn Dranoff

The inhibitor of apoptosis proteins (IAPs) have recently been shown to modulate nuclear factor κB (NF-κB) signaling downstream of tumor necrosis factor (TNF) family receptors, positioning them as essential survival factors in several cancer cell lines, as indicated by the cytotoxic activity of several novel small molecule IAP antagonists. In addition to roles in cancer, increasing evidence suggests that IAPs have an important function in immunity; however, the impact of IAP antagonists on antitumor immune responses is unknown. In this study, we examine the consequences of IAP antagonism on T cell function in vitro and in the context of a tumor vaccine in vivo. We find that IAP antagonists can augment human and mouse T cell responses to physiologically relevant stimuli. The activity of IAP antagonists depends on the activation of NF-κB2 signaling, a mechanism paralleling that responsible for the cytotoxic activity in cancer cells. We further show that IAP antagonists can augment both prophylactic and therapeutic antitumor vaccines in vivo. These findings indicate an important role for the IAPs in regulating T cell–dependent responses and suggest that targeting IAPs using small molecule antagonists may be a strategy for developing novel immunomodulating therapies against cancer.


Leukemia | 2010

Smac mimetics: implications for enhancement of targeted therapies in leukemia

Ellen Weisberg; Arghya Ray; Rosemary Barrett; Erik Nelson; Amanda L. Christie; Dale Porter; Christopher Sean Straub; Leigh Zawel; John F. Daley; Suzan Lazo-Kallanian; Richard Stone; Ilene Galinsky; David A. Frank; Andrew L. Kung; James D. Griffin

Drug resistance is a growing concern with clinical use of tyrosine kinase inhibitors. Utilizing in vitro models of intrinsic drug resistance and stromal-mediated chemoresistance, as well as functional mouse models of progressive and residual disease, we attempted to develop a potential therapeutic approach designed to suppress leukemia recurrence following treatment with selective kinase inhibitors. The novel inhibitor of apoptosis (IAP), LCL161, was observed to potentiate the effects of tyrosine kinase inhibition against leukemic disease both in the absence and presence of a stromal protected environment. LCL161 enhanced the proapoptotic effects of nilotinib and PKC412, against leukemic disease in vitro and potentiated the activity of both kinase inhibitors against leukemic disease in vivo. In addition, LCL161 synergized in vivo with nilotinib to reduce leukemia burden significantly below the baseline level suppression exhibited by a moderate-to-high dose of nilotinib. Finally, LCL161 displayed antiproliferative effects against cells characterized by intrinsic resistance to tyrosine kinase inhibitors as a result of expression of point mutations in the protein targets of drug inhibition. These results support the idea of using IAP inhibitors in conjunction with targeted tyrosine kinase inhibition to override drug resistance and suppress or eradicate residual disease.

Collaboration


Dive into the Dale Porter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pankaj Seth

National Brain Research Centre

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge