Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dale R. Balce is active.

Publication


Featured researches published by Dale R. Balce.


Proceedings of the National Academy of Sciences of the United States of America | 2010

NADPH oxidase activity controls phagosomal proteolysis in macrophages through modulation of the lumenal redox environment of phagosomes

Joanna M. Rybicka; Dale R. Balce; Morgan F. Khan; Regina M. Krohn; Robin M. Yates

The phagosomal lumen in macrophages is the site of numerous interacting chemistries that mediate microbial killing, macromolecular degradation, and antigen processing. Using a non-hypothesis-based screen to explore the interconnectivity of phagosomal functions, we found that NADPH oxidase (NOX2) negatively regulates levels of proteolysis within the maturing phagosome of macrophages. Unlike the NOX2 mechanism of proteolytic control reported in dendritic cells, this phenomenon in macrophages is independent of changes to lumenal pH and is also independent of hydrolase delivery to the phagosome. We found that NOX2 mediates the inhibition of phagosomal proteolysis in macrophages through reversible oxidative inactivation of local cysteine cathepsins. We also show that NOX2 activity significantly compromises the phagosomes ability to reduce disulfides. These findings indicate that NOX2 oxidatively inactivates cysteine cathepsins through sustained ablation of the reductive capacity of the phagosomal lumen. This constitutes a unique mechanism of spatiotemporal control of phagosomal chemistries through the modulation of the local redox environment. In addition, this work further implicates the microbicidal effector NOX2 as a global modulator of phagosomal physiologies, particularly of those pertinent to antigen processing.


The EMBO Journal | 2012

Phagosomal proteolysis in dendritic cells is modulated by NADPH oxidase in a pH‐independent manner

Joanna M. Rybicka; Dale R. Balce; Sibapriya Chaudhuri; Euan R. O. Allan; Robin M. Yates

The level of proteolysis within phagosomes of dendritic cells (DCs) is thought to be tightly regulated, as it directly impacts the cells efficiency to process antigen. Activity of the antimicrobial effector NADPH oxidase (NOX2) has been shown to reduce levels of proteolysis within phagosomes of both macrophages and DCs. However, the proposed mechanisms underlying these observations in these two myeloid cell lineages are dissimilar. Using real‐time analysis of lumenal microenvironmental parameters within phagosomes in live bone marrow‐derived DCs, we show that the levels of phagosomal proteolysis are diminished in the presence of NOX2 activity, but in contrast to previous reports, the acidification of the phagosome is largely unaffected. As found in macrophages, we show that NOX2 controls phagosomal proteolysis in DCs through redox modulation of local cysteine cathepsins. Aspartic cathepsins were unaffected by redox conditions, indicating that NOX2 skews the relative protease activities in these antigen processing compartments. The ability of DC phagosomes to reduce disulphides was also compromised by NOX2 activity, implicating this oxidase in the control of an additional antigen processing chemistry of DCs.


Blood | 2011

Alternative activation of macrophages by IL-4 enhances the proteolytic capacity of their phagosomes through synergistic mechanisms.

Dale R. Balce; Baoquan Li; Euan R. O. Allan; Joanna M. Rybicka; Regina M. Krohn; Robin M. Yates

Alternatively activated macrophages, generated in a T-helper 2 environment, have demonstrated roles in wound repair and tissue remodeling in addition to being charged with immune tasks. Because the hydrolytic chemistries of the phagosomal lumen are central to many of these functions, we investigated their modification after alternative activation with IL-4 and IL-13. Most significantly, we found striking up-regulation of the proteolytic levels within the phagosome of IL-4-activated macrophages. Two synergistic mechanisms were determined to underlie this up-regulation. First, IL-4-activated macrophages displayed increased expression of cathepsin S and L, providing greater proteolytic machinery to the phagosome despite unchanged rates of lysosomal contribution. Secondly, decreased phagosomal NADPH oxidase (NOX2) activity, at least partially resulting from decreased expression of the NOX2 subunit gp91(phox), resulted in a more reductive lumenal microenvironment, which in turn, enhanced activities of local cysteine cathepsins. Decreased NOX2 activity additionally increased the phagosomes ability to reduce disulfides, further enhancing the efficiency of the macrophage to degrade proteins containing disulfide bonds. Together, these changes initiated by IL-4 act synergistically to rapidly and dramatically enhance the macrophages ability to degrade phagocytosed protein, which, we reason, better equips this cell for its roles in wound repair and tissue remodeling.


Journal of Immunology | 2014

NADPH Oxidase Modifies Patterns of MHC Class II–Restricted Epitopic Repertoires through Redox Control of Antigen Processing

Euan R. O. Allan; Pankaj Tailor; Dale R. Balce; Payman Pirzadeh; Neil T. McKenna; Bernard Renaux; Amy L. Warren; Frank R. Jirik; Robin M. Yates

The chemistries within phagosomes of APCs mediate microbial destruction as well as generate peptides for presentation on MHC class II. The antimicrobial effector NADPH oxidase (NOX2), which generates superoxide within maturing phagosomes, has also been shown to regulate activities of cysteine cathepsins through modulation of the lumenal redox potential. Using real-time analyses of lumenal microenvironmental parameters, in conjunction with hydrolysis pattern assessment of phagocytosed proteins, we demonstrated that NOX2 activity not only affects levels of phagosomal proteolysis as previously shown, but also the pattern of proteolytic digestion. Additionally, it was found that NOX2 deficiency adversely affected the ability of bone marrow–derived macrophages, but not dendritic cells, to process and present the I-Ab–immunodominant peptide of the autoantigen myelin oligodendrocyte glycoprotein (MOG). Computational and experimental analyses indicated that the I-Ab binding region of the immunodominant peptide of MOG is susceptible to cleavage by the NOX2-controlled cysteine cathepsins L and S in a redox-dependent manner. Consistent with these findings, I-Ab mice that were deficient in the p47phox or gp91phox subunits of NOX2 were partially protected from MOG-induced experimental autoimmune encephalomyelitis and displayed compromised reactivation of MOG-specific CD4+ T cells in the CNS, despite eliciting a normal primary CD4+ T cell response to the inoculated MOG Ag. Taken together, this study demonstrates that the redox microenvironment within the phagosomes of APCs is a determinant in MHC class II repertoire production in a cell-specific and Ag-specific manner, which can ultimately impact susceptibility to CD4+ T cell–driven autoimmune disease processes.


Journal of Biological Chemistry | 2014

γ-Interferon-inducible Lysosomal Thiol Reductase (GILT) Maintains Phagosomal Proteolysis in Alternatively Activated Macrophages

Dale R. Balce; Euan R. O. Allan; Neil T. McKenna; Robin M. Yates

Background: GILT is known to reduce disulfide bonds in endosomes, lysosomes, and phagosomes. Results: GILT, in addition to reducing disulfide bonds, maintains phagosomal proteolytic activity, particularly in alternatively activated macrophages. Conclusion: GILT maintains activity of cysteine proteases in phagosomes. Significance: These results reveal a novel role for GILT that may affect antigen processing and efficiency of hydrolysis of phagocytosed protein. Although it is known that lysosomal cysteine cathepsins require a reducing environment for optimal activity, it is not firmly established how these enzymes are maintained in their reduced-active state in the acidic and occasionally oxidative environment within phagosomes and lysosomes. γ-Interferon-inducible lysosomal thiol reductase (GILT) has been the only enzyme described in the endosomes, lysosomes, and phagosomes with the potential to catalyze the reduction of cysteine cathepsins. Our goal in the current study was to assess the effect of GILT on major phagosomal functions with an emphasis on proteolytic efficiency in murine bone marrow-derived macrophages. Assessment of phagosomal disulfide reduction upon internalization of IgG-opsonized experimental particles confirmed a major role for GILT in phagosomal disulfide reduction in both resting and interferon-γ-activated macrophages. Furthermore we observed a decrease in early phagosomal proteolytic efficiency in GILT-deficient macrophages, specifically in the absence of an NADPH oxidase-mediated respiratory burst. This deficiency was more prominent in IL-4-activated macrophages that inherently possess lower levels of NADPH oxidase activity. Finally, we provide evidence that GILT is required for optimal activity of the lysosomal cysteine protease, cathepsin S. In summary, our results suggest a role for GILT in maintaining cysteine cathepsin proteolytic efficiency in phagosomes, particularly in the absence of high NADPH oxidase activity, which is characteristic of alternatively activated macrophages.


Redox biology | 2013

Redox-sensitive probes for the measurement of redox chemistries within phagosomes of macrophages and dendritic cells.

Dale R. Balce; Robin M. Yates

There is currently much interest in factors that affect redox chemistries within phagosomes of macrophages and dendritic cells. In addition to the antimicrobial role of reactive oxygen species generation within phagosomes, accumulating evidence suggests that phagosomal redox chemistries influence other phagosomal functions such as macromolecular degradation and antigen processing. Whilst the redox chemistries within many sub-cellular compartments are being heavily scrutinized with the increasing use of fluorescent probe technologies, there is a paucity of tools to assess redox conditions within phagosomes. Hence the systems that control redox homeostasis in these unique environments remain poorly defined. This review highlights current redox-sensitive probes that can measure oxidative or reductive activity in phagosomes and discusses their suitability and limitations of use. Probes that are easily targeted to the phagosome by using established approaches are emphasized.


Nature Communications | 2017

Smac mimetics and oncolytic viruses synergize in driving anticancer T-cell responses through complementary mechanisms

Dae-Sun Kim; Himika Dastidar; Chunfen Zhang; Franz J. Zemp; Keith Lau; Matthias Ernst; Andrea Rakic; Saif Sikdar; Jahanara Rajwani; Victor Naumenko; Dale R. Balce; Ben W. Ewanchuk; Pankaj Taylor; Robin M. Yates; Craig N. Jenne; Chris Gafuik; Douglas J. Mahoney

Second mitochondrial activator of caspase (Smac)-mimetic compounds and oncolytic viruses were developed to kill cancer cells directly. However, Smac-mimetic compound and oncolytic virus therapies also modulate host immune responses in ways we hypothesized would complement one another in promoting anticancer T-cell immunity. We show that Smac-mimetic compound and oncolytic virus therapies synergize in driving CD8+ T-cell responses toward tumors through distinct activities. Smac-mimetic compound treatment with LCL161 reinvigorates exhausted CD8+ T cells within immunosuppressed tumors by targeting tumor-associated macrophages for M1-like polarization. Oncolytic virus treatment with vesicular stomatitis virus (VSVΔM51) promotes CD8+ T-cell accumulation within tumors and CD8+ T-cell activation within the tumor-draining lymph node. When combined, LCL161 and VSVΔM51 therapy engenders CD8+ T-cell-mediated tumor control in several aggressive mouse models of cancer. Smac-mimetic compound and oncolytic virus therapies are both in clinical development and their combination therapy represents a promising approach for promoting anticancer T-cell immunity.Oncolytic viruses (OV) and second mitochondrial activator of caspase (Smac)-mimetic compounds (SMC) synergistically kill cancer cells directly. Here, the authors show that SMC and OV therapies combination also synergize in vivo by promoting anticancer immunity through an increase in CD8+ T-cell response.


Journal of General Virology | 2016

Infection of porcine bone marrow-derived macrophages by porcine respiratory and reproductive syndrome virus impairs phagosomal maturation

Sibapriya Chaudhuri; Neil T. McKenna; Dale R. Balce; Robin M. Yates

Porcine reproductive and respiratory syndrome virus (PRRSV), a positive-sense, ssRNA virus of the genus Arterivirus, is a devastating disease of swine worldwide. Key early targets of PRRSV infection in pigs include professional phagocytes in the lung, such as alveolar and interstitial macrophages and dendritic cells, the dysfunction of which is believed to be responsible for much of the associated mortality. In order to study the effect of virus infection on phagocyte function, the development of a robust, reproducible model would be advantageous. Given the limitations of current models, we set out to develop a porcine bone marrow-derived macrophage (PBMMΦ) cell model to study phagosomal maturation and function during PRRSV infection. Derivation of PBMMΦs from marrow using cultured L929 fibroblast supernatant produced a homogeneous population of cells that exhibited macrophage-like morphology and proficiency in Fc-receptor-mediated phagocytosis and phagosomal maturation. PBMMΦs were permissive to PRRSV infection, resulting in a productive infection that peaked at 24 h. Assessment of the effect of PRRSV infection on the properties of phagosomal maturation in PBMMΦs revealed a significant decrease in phagosomal proteolysis and lowered production of reactive oxygen species, but no change in PBMMΦ viability, phagocytosis or the ability of phagosomes to acidify. In this study, we present a new model to investigate PRRSV infection of phagocytes, which demonstrates a significant effect on phagosomal maturation with the associated implications on proper macrophage function. This model can also be used to study the effect on the phagosomal microenvironment of infection by other viruses targeting porcine macrophages.


Journal of Immunological Methods | 2011

In vitro and in vivo transfection of primary phagocytes via microbubble-mediated intraphagosomal sonoporation

Jason C.M. Lemmon; Ryan J. McFarland; Joanna M. Rybicka; Dale R. Balce; Kyle Mckeown; Regina M. Krohn; Terry O. Matsunaga; Robin M. Yates

The professional phagocytes, such as macrophages and dendritic cells, are the subject of numerous research efforts in immunology and cell biology. The use of primary phagocytes in these investigations however, are limited by their inherent resistance to transfection with DNA constructs. As a result, the use of phagocyte-like immortalized cell lines is widespread. While these cell lines are transfection permissive, they are generally regarded as poor biological substitutes for primary phagocytes. By exploiting the phagocytic machinery of primary phagocytes, we developed a non-viral method of DNA transfection of macrophages that employs intraphagosomal sonoporation mediated by internalized lipid-based microbubbles. This approach enables the transfection of primary phagocytes in vitro, with a modest, but reliable efficiency. Furthermore, this methodology was readily adapted to transfect murine peritoneal macrophages in vivo. This technology has immediate application to current research efforts and has potential for use in gene therapy and vaccination strategies.


Journal of Neuroinflammation | 2017

A role for cathepsin Z in neuroinflammation provides mechanistic support for an epigenetic risk factor in multiple sclerosis

Euan R. O. Allan; Rhiannon I. Campden; Benjamin W. Ewanchuk; Pankaj Tailor; Dale R. Balce; Neil T. McKenna; Catherine J. Greene; Amy L. Warren; Thomas Reinheckel; Robin M. Yates

BackgroundHypomethylation of the cathepsin Z locus has been proposed as an epigenetic risk factor for multiple sclerosis (MS). Cathepsin Z is a unique lysosomal cysteine cathepsin expressed primarily by antigen presenting cells. While cathepsin Z expression has been associated with neuroinflammatory disorders, a role for cathepsin Z in mediating neuroinflammation has not been previously established.MethodsExperimental autoimmune encephalomyelitis (EAE) was induced in both wildtype mice and mice deficient in cathepsin Z. The effects of cathepsin Z-deficiency on the processing and presentation of the autoantigen myelin oligodendrocyte glycoprotein, and on the production of IL-1β and IL-18 were determined in vitro from cells derived from wildtype and cathepsin Z-deficient mice. The effects of cathepsin Z-deficiency on CD4+ T cell activation, migration, and infiltration to the CNS were determined in vivo. Statistical analyses of parametric data were performed by one-way ANOVA followed by Tukey post-hoc tests, or by an unpaired Student’s t test. EAE clinical scoring was analyzed using the Mann–Whitney U test.ResultsWe showed that mice deficient in cathepsin Z have reduced neuroinflammation and dramatically lowered circulating levels of IL-1β during EAE. Deficiency in cathepsin Z did not impact either the processing or the presentation of MOG, or MOG- specific CD4+ T cell activation and trafficking. Consistently, we found that cathepsin Z-deficiency reduced the efficiency of antigen presenting cells to secrete IL-1β, which in turn reduced the ability of mice to generate Th17 responses—critical steps in the pathogenesis of EAE and MS.ConclusionTogether, these data support a novel role for cathepsin Z in the propagation of IL-1β-driven neuroinflammation.

Collaboration


Dive into the Dale R. Balce's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge