Dali Li
East China Normal University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dali Li.
Nature Biotechnology | 2013
Dali Li; Zhongwei Qiu; Yanjiao Shao; Yuting Chen; Yuting Guan; Meizhen Liu; Yongmei Li; Na Gao; Liren Wang; Xiaoling Lu; Yongxiang Zhao; Mingyao Liu
To the Editor: CRISPR-Cas systems have been developed as an efficient gene editing technology in cells and model organisms. Here we use a CRISPR-Cas system to induce genomic DNA fragment deletion in mice by coinjecting two single-guide RNAs (sgRNAs) targeting the Uhrf2 locus with Cas9 mRNA. Furthermore, we report the generation of a Mc3R and Mc4R double-gene knockout rat by means of a single microinjection. High germline-transmission efficiency was observed in both mice and rats. The clustered, regularly interspaced, short palindromic repeats (CRISPR)associated protein (Cas) system has evolved in bacteria and archaea as an RNA-based adaptive immune system against viral and plasmid invasion1. Based on gene conservation and locus organization, three major types of CRISPR systems have been identified2,3. In the type II systems, the complex of a CRISPR RNA (crRNA) annealed to a trans-activating crRNA (tracrRNA) is sufficient to guide the Cas9 endonuclease to a specific genomic sequence to generate double-strand breaks in target DNA4. Previous studies established a strategy for multiplex genome engineering with the Cas9 RNA-guided endonuclease in mammalian cells5,6. Recently, efficient genome editing by the CRISPR-Cas system has been shown in multiple organisms, including zebrafish, mice and bacteria7–9. Several groups have demonstrated that compared with zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), CRISPR-Cas–mediated gene targeting has similar or greater efficiency in cells and zebrafish5–7,10. Although it has been demonstrated that multiple genes can be disrupted in individual mouse embryos using CRISPR-Cas–mediated systems9, germline transmission of Cas9-mediated mutations in animals has not yet been reported. In addition, whether long, specific, genomic DNA target fragments
Development | 2009
Jian Luo; Wei Zhou; Xin Zhou; Dali Li; Jinsheng Weng; Zhengfang Yi; Sung-Gook Cho; Chenghai Li; Tingfang Yi; Xiushan Wu; Xiao Ying Li; Benoit de Crombrugghe; Magnus Höök; Mingyao Liu
G-protein-coupled receptor (GPCR) 48 (Gpr48; Lgr4), a newly discovered member of the glycoprotein hormone receptor subfamily of GPCRs, is an orphan GPCR of unknown function. Using a knockout mouse model, we have characterized the essential roles of Gpr48 in bone formation and remodeling. Deletion of Gpr48 in mice results in a dramatic delay in osteoblast differentiation and mineralization, but not in chondrocyte proliferation and maturation, during embryonic bone formation. Postnatal bone remodeling is also significantly affected in Gpr48-/- mice, including the kinetic indices of bone formation rate, bone mineral density and osteoid formation, whereas the activity and number of osteoclasts are increased as assessed by tartrate-resistant acid phosphatase staining. Examination of the molecular mechanism of Gpr48 action in bone formation revealed that Gpr48 can activate the cAMP-PKA-CREB signaling pathway to regulate the expression level of Atf4 in osteoblasts. Furthermore, we show that Gpr48 significantly downregulates the expression levels of Atf4 target genes/proteins, such as osteocalcin (Ocn; Bglap2), bone sialoprotein (Bsp; Ibsp) and collagen. Together, our data demonstrate that Gpr48 regulates bone formation and remodeling through the cAMP-PKA-Atf4 signaling pathway.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Jinsheng Weng; Jian Luo; Xuhong Cheng; Chang Jin; Xiangtian Zhou; Jia Qu; LiLi Tu; Di Ai; Dali Li; Jun Wang; James F. Martin; Brad A. Amendt; Mingyao Liu
The development of the anterior segment of the mammalian eye is critical for normal ocular function, whereas abnormal development can cause glaucoma, a leading cause of blindness in the world. We report that orphan G protein-coupled receptor 48 (Gpr48/LGR4) plays an important role in the development of the anterior segment structure. Disruption of Gpr48 causes a wide spectrum of anterior segment dysgenesis (ASD), including microphthalmia, iris hypoplasia, irdiocorneal angle malformation, cornea dysgenesis, and cataract. Detailed analyses reveal that defective iris myogenesis and ocular extracellular matrix homeostasis are detected at early postnatal stages of eye development, whereas ganglion cell loss, inner nuclear layer thinness, and early onset of glaucoma were detected in 6-month-old Gpr48−/− mice. To determine the molecular mechanism of ASD caused by the deletion of Gpr48, we performed gene expression analyses and revealed dramatic down-regulation of Pitx2 in homozygous knockout mice. In vitro studies with the constitutively active Gpr48 mutant receptor demonstrate that Pitx2 is a direct target of the Gpr48-mediated cAMP-CREB signaling pathway in regulating anterior segment development, suggesting a role of Gpr48 as a potential therapeutic target of ASD.
Carcinogenesis | 2010
Yanmin Dong; Binbin Lu; Xiaoli Zhang; Jing Zhang; Li Lai; Dali Li; Yuanyuan Wu; Yajuan Song; Jian Luo; Xiufeng Pang; Zhengfang Yi; Mingyao Liu
Cucurbitacin E (CuE, α-elaterin), a tetracyclic triterpenes compound from folk traditional Chinese medicine plants, has been shown to inhibit cancer cell growth, inflammatory response and bilirubin-albumin binding. However, the effects of CuE on tumor angiogenesis and its potential molecular mechanism are still unknown. Here, we demonstrated that CuE significantly inhibited human umbilical vascular endothelial cell (HUVEC) proliferation, migration and tubulogenesis in vitro and blocked angiogenesis in chick embryo chorioallantoic membrane assay and mouse corneal angiogenesis model in vivo. Furthermore, we found that CuE remarkably induced HUVEC apoptosis, inhibited tumor angiogenesis and suppressed human prostate tumor growth in xenograft tumor model. Finally, we showed that CuE blocked vascular endothelial growth factor receptor (VEGFR) 2-mediated Janus kinase (Jak) 2-signal transducer and activator of transcription (STAT) 3 signaling pathway in endothelial cells and suppressed the downstream protein kinases, such as extracellular signal-regulated kinase and p38 mitogen-activated protein kinases. Therefore, our studies provided the first evidence that CuE inhibited tumor angiogenesis by inhibiting VEGFR2-mediated Jak-STAT3 and mitogen-activated protein kinases signaling pathways and CuE is a potential candidate in angiogenesis-related disease therapy.
Nature Protocols | 2014
Yanjiao Shao; Yuting Guan; Liren Wang; Zhongwei Qiu; Meizhen Liu; Yuting Chen; Lijuan Wu; Yongmei Li; Xueyun Ma; Mingyao Liu; Dali Li
Conventional embryonic stem cell (ESC)–based gene targeting, zinc-finger nuclease (ZFN) and transcription activator–like effector nuclease (TALEN) technologies are powerful strategies for the generation of genetically modified animals. Recently, the CRISPR/Cas system has emerged as an efficient and convenient alternative to these approaches. We have used the CRISPR/Cas system to generate rat strains that carry mutations in multiple genes through direct injection of RNAs into one-cell embryos, demonstrating the high efficiency of Cas9-mediated gene editing in rats for simultaneous generation of compound gene mutant models. Here we describe a stepwise procedure for the generation of knockout and knock-in rats. This protocol provides guidelines for the selection of genomic targets, synthesis of guide RNAs, design and construction of homologous recombination (HR) template vectors, embryo microinjection, and detection of mutations and insertions in founders or their progeny. The procedure from target design to identification of founders can take as little as 6 weeks, of which <10 d is actual hands-on working time.
Cancer Research | 2009
Sung-Gook Cho; Zhengfang Yi; Xiufeng Pang; Tingfang Yi; Ying Wang; Jian Luo; Zirong Wu; Dali Li; Mingyao Liu
Kisspeptin-10 (Kp-10), a decapeptide derived from the primary translation product of KISS1 gene, has been reported previously to be a key hormone for puberty and an inhibitor for tumor metastasis via the activation of G protein-coupled receptor 54. However, whether Kp-10 inhibits angiogenesis, which is critical for tumor growth and metastasis and other human diseases, is still unknown. Here we show that Kp-10 significantly inhibits human umbilical vein endothelial cell (HUVEC) migration, invasion, and tube formation, key processes in angiogenesis. Using chicken chorioallantoic membrane assay and vascular endothelial growth factor (VEGF)-induced mouse corneal micropocket assay, we show that Kp-10 inhibits angiogenesis in vivo. Furthermore, Kp-10 inhibits tumor growth in severe combined immunodeficient mice xenografted with human prostate cancer cells (PC-3) through inhibiting tumor angiogenesis, whereas Kp-10 has little effect on the proliferation of HUVECs and human prostate cancer cells. In deciphering the underlying molecular mechanisms, we show that Kp-10 suppresses VEGF expression by inhibiting the binding of specificity protein 1 to VEGF promoter and by blocking the activation of c-Src/focal adhesion kinase and Rac/Cdc42 signaling pathways in HUVECs, leading to the inhibition of tumor angiogenesis.
Acta Pharmacologica Sinica | 2012
Xiaolong Tang; Ying Wang; Dali Li; Jian Luo; Mingyao Liu
The superfamily of G protein-coupled receptors (GPCRs) includes at least 800 seven-transmembrane receptors that participate in diverse physiological and pathological functions. GPCRs are the most successful targets of modern medicine, and approximately 36% of marketed pharmaceuticals target human GPCRs. However, the endogenous ligands of more than 140 GPCRs remain unidentified, leaving the natural functions of those GPCRs in doubt. These are the so-called orphan GPCRs, a great source of drug targets. This review focuses on the signaling transduction pathways of the adhesion GPCR family, the LGR subfamily, and the PSGR subfamily, and their potential functions in immunology, development, and cancers. In this review, we present the current approaches and difficulties of orphan GPCR deorphanization and characterization.
Molecular Cancer | 2010
Chenghai Li; Zhengfeng Yang; Chunyan Zhai; Wenwei Qiu; Dali Li; Zhengfang Yi; Lei Wang; Jie Tang; Min Qian; Jian Luo; Mingyao Liu
BackgroundTumor necrosis factor alpha (TNFα) has been used to treat certain tumors in clinic trials. However, the curative effect of TNFα has been undermined by the induced-NF-κB activation in many types of tumor. Maslinic acid (MA), a pharmacological safe natural product, has been known for its important effects as anti-oxidant, anti-inflammatory, and anti-viral activities. The aim of this study was to determine whether MA potentiates the anti-tumor activity of TNFα though the regulation of NF-κB activation.ResultsIn this study, we demonstrate that MA significantly enhanced TNFα-induced inhibition of pancreatic cancer cell proliferation, invasion, and potentiated TNFα-induced cell apoptosis by suppressing TNFα-induced NF-κB activation in a dose- and time-dependent manner. Addition of MA inhibited TNFα-induced IκBα degradation, p65 phosphorylation, and nuclear translocation. Furthermore, MA decreased the expression levels of NF-κB-regulated genes, including genes involved in tumor cell proliferation (Cyclin D1, COX-2 and c-Myc), apoptosis (Survivin, Bcl-2, Bcl-xl, XIAP, IAP-1), invasion (MMP-9 and ICAM-1), and angiogenesis (VEGF). In athymic nu/nu mouse model, we further demonstrated that MA significantly suppressed pancreatic tumor growth, induced tumor apoptosis, and inhibited NF-κB-regulated anti-apoptotic gene expression, such as Survivin and Bcl-xl.ConclusionsOur data demonstrate that MA can potentiate the anti-tumor activities of TNFα and inhibit pancreatic tumor growth and invasion by activating caspase-dependent apoptotic pathway and by suppressing NF-κB activation and its downstream gene expression. Therefore, MA together with TNFα could be new promising agents in the treatment of pancreatic cancer.
Nucleic Acids Research | 2013
Zhongwei Qiu; Meizhen Liu; Zhaohua Chen; Yanjiao Shao; Hongjie Pan; Gaigai Wei; Chao Yu; Long Zhang; Xia Li; Ping Wang; Heng-Yu Fan; Bing Du; Bin Liu; Mingyao Liu; Dali Li
Transcription activator-like effector nucleases (TALENs) are a powerful new approach for targeted gene disruption in various animal models, but little is known about their activities in Mus musculus, the widely used mammalian model organism. Here, we report that direct injection of in vitro transcribed messenger RNA of TALEN pairs into mouse zygotes induced somatic mutations, which were stably passed to the next generation through germ-line transmission. With one TALEN pair constructed for each of 10 target genes, mutant F0 mice for each gene were obtained with the mutation rate ranged from 13 to 67% and an average of ∼40% of total healthy newborns with no significant differences between C57BL/6 and FVB/N genetic background. One TALEN pair with single mismatch to their intended target sequence in each side failed to yield any mutation. Furthermore, highly efficient germ-line transmission was obtained, as all the F0 founders tested transmitted the mutations to F1 mice. In addition, we also observed that one bi-allele mutant founder of Lepr gene, encoding Leptin receptor, had similar diabetic phenotype as db/db mouse. Together, our results suggest that TALENs are an effective genetic tool for rapid gene disruption with high efficiency and heritability in mouse with distinct genetic background.
Nature Medicine | 2016
Jian Luo; Zhengfeng Yang; Yu Ma; Zhiying Yue; Hongyu Lin; Guojun Qu; Jinping Huang; Wentao Dai; Chenghai Li; Chunbing Zheng; Huaqing Chen; Jiqiu Wang; Dali Li; Stefan Siwko; Josef M. Penninger; Guang Ning; Jianru Xiao; Mingyao Liu
Tumor necrosis factor (TNF) superfamily member 11 (TNFSF11, also known as RANKL) regulates multiple physiological or pathological functions, including osteoclast differentiation and osteoporosis. TNFRSF11A (also called RANK) is considered to be the sole receptor for RANKL. Herein we report that leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4, also called GPR48) is another receptor for RANKL. LGR4 competes with RANK to bind RANKL and suppresses canonical RANK signaling during osteoclast differentiation. RANKL binding to LGR4 activates the Gαq and GSK3-β signaling pathway, an action that suppresses the expression and activity of nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1 (NFATC1) during osteoclastogenesis. Both whole-body (Lgr4−/−) and monocyte conditional knockout mice of Lgr4 (Lgr4 CKO) exhibit osteoclast hyperactivation (including elevation of osteoclast number, surface area, and size) and increased bone erosion. The soluble LGR4 extracellular domain (ECD) binds RANKL and inhibits osteoclast differentiation in vivo. Moreover, LGR4-ECD therapeutically abrogated RANKL-induced bone loss in three mouse models of osteoporosis. Therefore, LGR4 acts as a second RANKL receptor that negatively regulates osteoclast differentiation and bone resorption.