Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dalia Denapaite is active.

Publication


Featured researches published by Dalia Denapaite.


PLOS ONE | 2010

The Genome of Streptococcus mitis B6 - What Is a Commensal?

Dalia Denapaite; Reinhold Brückner; Michael Nuhn; Peter Reichmann; Bernhard Henrich; Patrick Maurer; Yvonne Schähle; Peter Selbmann; Wolfgang Zimmermann; Rolf Wambutt; Regine Hakenbeck

Streptococcus mitis is the closest relative of the major human pathogen S. pneumoniae. The 2,15 Mb sequence of the Streptococcus mitis B6 chromosome, an unusually high-level beta-lactam resistant and multiple antibiotic resistant strain, has now been determined to encode 2100 genes. The accessory genome is estimated to represent over 40%, including 75 mostly novel transposases and IS, the prophage φB6 and another seven phage related regions. Tetracycline resistance mediated by Tn5801, and an unusual and large gene cluster containing three aminoglycoside resistance determinants have not been described in other Streptococcus spp. Comparative genomic analyses including hybridization experiments on a S. mitis B6 specific microarray reveal that individual S. mitis strains are almost as distantly related to the B6 strain as S. pneumoniae. Both species share a core of over 900 genes. Most proteins described as pneumococcal virulence factors are present in S. mitis B6, but the three choline binding proteins PcpA, PspA and PspC, and three gene clusters containing the hyaluronidase gene, ply and lytA, and the capsular genes are absent in S. mitis B6 and other S. mitis as well and confirm their importance for the pathogenetic potential of S. pneumoniae. Despite the close relatedness between the two species, the S. mitis B6 genome reveals a striking X-alignment when compared with S. pneumoniae.


Future Microbiology | 2012

Molecular mechanisms of β-lactam resistance in Streptococcus pneumoniae

Regine Hakenbeck; Reinhold Brückner; Dalia Denapaite; Patrick Maurer

Alterations in the target enzymes for β-lactam antibiotics, the penicillin-binding proteins (PBPs), have been recognized as a major resistance mechanism in Streptococcus pneumoniae. Mutations in PBPs that confer a reduced affinity to β-lactams have been identified in laboratory mutants and clinical isolates, and document an astounding variability of sites involved in this phenotype. Whereas point mutations are selected in the laboratory, clinical isolates display a mosaic structure of the affected PBP genes, the result of interspecies gene transfer and recombination events. Depending on the selective β-lactam, different combinations of PBP genes and mutations within are involved in conferring resistance, and astoundingly in non-PBP genes as well.


Microbial Drug Resistance | 2012

Biosynthesis of Teichoic Acids in Streptococcus pneumoniae and Closely Related Species: Lessons from Genomes

Dalia Denapaite; Reinhold Brückner; Regine Hakenbeck; Waldemar Vollmer

The cell wall of Streptococcus pneumoniae contains an unusually complex wall teichoic acid (WTA), which has identical repeating units as the membrane-anchored lipoteichoic acid (LTA). Both polymers share a common cytoplasmic pathway of precursor synthesis, but several TA enzymes have remained elusive. Bioinformatic analysis of the genome of various pneumococcal strains, including choline-independent mutant strains, has allowed us to identify the missing TA genes. We present here the deduced complete pathways of WTA and LTA synthesis in S. pneumoniae and point to the variations occurring in different pneumococcal strains and in closely related species such as Streptococcus oralis and Streptococcus mitis.


Journal of Bacteriology | 2011

Genome of Streptococcus oralis strain Uo5.

Peter Reichmann; Michael Nuhn; Dalia Denapaite; Reinhold Brückner; Bernhard Henrich; Patrick Maurer; Martin Rieger; Sven Klages; Richard Reinhard; Regine Hakenbeck

Streptococcus oralis, a commensal species of the human oral cavity, belongs to the Mitis group of streptococci, which includes one of the major human pathogens as well, S. pneumoniae. We report here the first complete genome sequence of this species. S. oralis Uo5, a high-level penicillin- and multiple-antibiotic-resistant isolate from Hungary, is competent for genetic transformation under laboratory conditions. Comparative and functional genomics of Uo5 will be important in understanding the evolution of pathogenesis among Mitis streptococci and their potential to engage in interspecies gene transfer.


Molecular Microbiology | 2014

Streptococcus pneumoniae PBP2x mid‐cell localization requires the C‐terminal PASTA domains and is essential for cell shape maintenance

Katharina Peters; Inga Schweizer; Katrin Beilharz; Christoph Stahlmann; Jan-Willem Veening; Regine Hakenbeck; Dalia Denapaite

The transpeptidase activity of the essential penicillin‐binding protein 2x (PBP2x) of Streptococcus pneumoniae is believed to be important for murein biosynthesis required for cell division. To study the molecular mechanism driving localization of PBP2x in live cells, we constructed a set of N‐terminal GFP–PBP2x fusions under the control of a zinc‐inducible promoter. The ectopic fusion protein localized at mid‐cell. Cells showed no growth defects even in the absence of the genomic pbp2x, demonstrating that GFP–PBP2x is functional. Depletion of GFP–PBP2x resulted in severe morphological alterations, confirming the essentiality of PBP2x and demonstrating that PBP2x is required for cell division and not for cell elongation. A genetically or antibiotic inactivated GFP–PBP2x still localized at septal sites. Remarkably, the same was true for a GFP–PBP2x derivative containing a deletion of the central transpeptidase domain, although only in the absence of the protease/chaperone HtrA. Thus localization is independent of the catalytic transpeptidase domain but requires the C‐terminal PASTA domains, identifying HtrA as targeting GFP–PBP2x derivatives. Finally, PBP2x was positioned at the septum similar to PBP1a and the PASTA domain containing StkP protein, confirming that PBP2x is a key element of the divisome complex.


Antimicrobial Agents and Chemotherapy | 2009

An Important Site in PBP2x of Penicillin-Resistant Clinical Isolates of Streptococcus pneumoniae: Mutational Analysis of Thr338

Ilka Zerfass; Regine Hakenbeck; Dalia Denapaite

ABSTRACT Penicillin-binding protein 2x (PBP2x) of Streptococcus pneumoniae represents a primary resistance determinant for beta-lactams, and low-affinity PBP2x variants can easily be selected with cefotaxime. Penicillin-resistant clinical isolates of S. pneumoniae frequently contain in their mosaic PBP2x the mutation T338A adjacent to the active site S337, and T338P as well as T338G substitutions are also known. Site-directed mutagenesis has now documented that a single point mutation at position T338 confers selectable levels of beta-lactam resistance preferentially to oxacillin. Despite the moderate impact on beta-lactam susceptibility, the function of the PBP2x mutants appears to be impaired, as can be documented in the absence of a functional CiaRH regulatory system, resulting in growth defects and morphological changes. The combination of low-affinity PBP2x and PBP1a encoded by mosaic genes is known to result in high cefotaxime resistance. In contrast, introduction of a mosaic pbp1a into the PBP2xT338G mutant did not lead to increased resistance. However, the mosaic PBP1a gene apparently complemented the PBP2xT338G defect, since Cia mutant derivatives grew normally. The data support the view that PBP2x and PBP1a interact with each other on some level and that alterations of both PBPs in resistant clinical isolates have evolved to ensure cooperation between both proteins.


Journal of Bacteriology | 2017

Roles of the essential protein FtsA in cell growth and division in Streptococcus pneumoniae

Andrea Mura; Daniela Fadda; Amilcar J. Perez; Madeline L. Danforth; Daniela Musu; Ana Isabel Rico; Marcin Krupka; Dalia Denapaite; Ho Ching T. Tsui; Malcolm E. Winkler; Pavel Branny; Miguel Vicente; William Margolin; Orietta Massidda

Streptococcus pneumoniae is an ovoid-shaped Gram-positive bacterium that grows by carrying out peripheral and septal peptidoglycan (PG) synthesis, analogous to model bacilli, such as Escherichia coli and Bacillus subtilis In the model bacilli, FtsZ and FtsA proteins assemble into a ring at midcell and are dedicated to septal PG synthesis but not peripheral PG synthesis; hence, inactivation of FtsZ or FtsA results in long filamentous cells unable to divide. Here, we demonstrate that FtsA and FtsZ colocalize at midcell in S. pneumoniae and that partial depletion of FtsA perturbs septum synthesis, resulting in elongated cells with multiple FtsZ rings that fail to complete septation. Unexpectedly, complete depletion of FtsA resulted in the delocalization of FtsZ rings and ultimately cell ballooning and lysis. In contrast, depletion or deletion of gpsB and sepF, which in B. subtilis are synthetically lethal with ftsA, resulted in enlarged and elongated cells with multiple FtsZ rings, with deletion of sepF mimicking partial depletion of FtsA. Notably, cell ballooning was not observed, consistent with later recruitment of these proteins to midcell after Z-ring assembly. The overproduction of FtsA stimulates septation and suppresses the cell division defects caused by the deletion of sepF and gpsB under some conditions, supporting the notion that FtsA shares overlapping functions with GpsB and SepF at later steps in the division process. Our results indicate that, in S. pneumoniae, both GpsB and SepF are involved in septal PG synthesis, whereas FtsA and FtsZ coordinate both peripheral and septal PG synthesis and are codependent for localization at midcell.IMPORTANCEStreptococcus pneumoniae (pneumococcus) is a clinically important human pathogen for which more therapies against unexploited essential targets, like cell growth and division proteins, are needed. Pneumococcus is an ovoid-shaped Gram-positive bacterium with cell growth and division properties that have important distinctions from those of rod-shaped bacteria. Gaining insights into these processes can thus provide valuable information to develop novel antimicrobials. Whereas rods use distinctly localized protein machines at different cellular locations to synthesize peripheral and septal peptidoglycans, we present evidence that S. pneumoniae organizes these two machines at a single location in the middle of dividing cells. Here, we focus on the properties of the actin-like protein FtsA as an essential orchestrator of peripheral and septal growth in this bacterium.


mSphere | 2016

Highly Variable Streptococcus oralis Strains Are Common among Viridans Streptococci Isolated from Primates

Dalia Denapaite; Martin Rieger; Sophie Köndgen; Reinhold Brückner; Irma Ochigava; Peter M. Kappeler; Kerstin Mätz-Rensing; Fabian H. Leendertz; Regine Hakenbeck

Streptococcus pneumoniae is a rare example of a human-pathogenic bacterium among viridans streptococci, which consist of commensal symbionts, such as the close relatives Streptococcus mitis and S. oralis. We have shown that S. oralis can frequently be isolated from primates and a variety of other viridans streptococci as well. Genes and genomic islands which are known pneumococcal virulence factors are present in S. oralis and S. mitis, documenting the widespread occurrence of these compounds, which encode surface and secreted proteins. The frequent occurrence of CRISP-Cas gene clusters and a surprising variation of a set of small noncoding RNAs are factors to be considered in future research to further our understanding of mechanisms involved in the genomic diversity driven by horizontal gene transfer among viridans streptococci. ABSTRACT Viridans streptococci were obtained from primates (great apes, rhesus monkeys, and ring-tailed lemurs) held in captivity, as well as from free-living animals (chimpanzees and lemurs) for whom contact with humans is highly restricted. Isolates represented a variety of viridans streptococci, including unknown species. Streptococcus oralis was frequently isolated from samples from great apes. Genotypic methods revealed that most of the strains clustered on separate lineages outside the main cluster of human S. oralis strains. This suggests that S. oralis is part of the commensal flora in higher primates and evolved prior to humans. Many genes described as virulence factors in Streptococcus pneumoniae were present also in other viridans streptococcal genomes. Unlike in S. pneumoniae, clustered regularly interspaced short palindromic repeat (CRISPR)–CRISPR-associated protein (Cas) gene clusters were common among viridans streptococci, and many S. oralis strains were type PI-2 (pilus islet 2) variants. S. oralis displayed a remarkable diversity of genes involved in the biosynthesis of peptidoglycan (penicillin-binding proteins and MurMN) and choline-containing teichoic acid. The small noncoding cia-dependent small RNAs (csRNAs) controlled by the response regulator CiaR might contribute to the genomic diversity, since we observed novel genomic islands between duplicated csRNAs, variably present in some isolates. All S. oralis genomes contained a β-N-acetyl-hexosaminidase gene absent in S. pneumoniae, which in contrast frequently harbors the neuraminidases NanB/C, which are absent in S. oralis. The identification of S. oralis-specific genes will help us to understand their adaptation to diverse habitats. IMPORTANCE Streptococcus pneumoniae is a rare example of a human-pathogenic bacterium among viridans streptococci, which consist of commensal symbionts, such as the close relatives Streptococcus mitis and S. oralis. We have shown that S. oralis can frequently be isolated from primates and a variety of other viridans streptococci as well. Genes and genomic islands which are known pneumococcal virulence factors are present in S. oralis and S. mitis, documenting the widespread occurrence of these compounds, which encode surface and secreted proteins. The frequent occurrence of CRISP-Cas gene clusters and a surprising variation of a set of small noncoding RNAs are factors to be considered in future research to further our understanding of mechanisms involved in the genomic diversity driven by horizontal gene transfer among viridans streptococci.


Antimicrobial Agents and Chemotherapy | 2014

A Low-Affinity Penicillin-Binding Protein 2x Variant Is Required for Heteroresistance in Streptococcus pneumoniae

Hans Jürg Engel; Moana Mika; Dalia Denapaite; Regine Hakenbeck; Kathrin Mühlemann; Manfred Heller; Lucy J. Hathaway

ABSTRACT Heteroresistance to penicillin in Streptococcus pneumoniae is the ability of subpopulations to grow at a higher antibiotic concentration than expected from the MIC. This may render conventional resistance testing unreliable and lead to therapeutic failure. We investigated the role of the primary β-lactam resistance determinants, penicillin-binding protein 2b (PBP2b) and PBP2x, and the secondary resistance determinant PBP1a in heteroresistance to penicillin. Transformants containing PBP genes from the heteroresistant strain Spain23F2349 in the nonheteroresistant strain R6 background were tested for heteroresistance by population analysis profiling (PAP). We found that pbp2x, but not pbp2b or pbp1a alone, conferred heteroresistance to R6. However, a change of pbp2x expression was not observed, and therefore, expression does not correlate with an increased proportion of resistant subpopulations. In addition, the influence of the CiaRH system, mediating PBP-independent β-lactam resistance, was assessed by PAP on ciaR disruption mutants but revealed no heteroresistant phenotype. We also showed that the highly resistant subpopulations (HOM*) of transformants containing low-affinity pbp2x undergo an increase in resistance upon selection on penicillin plates that partially reverts after passaging on selection-free medium. Shotgun proteomic analysis showed an upregulation of phosphate ABC transporter subunit proteins encoded by pstS, phoU, pstB, and pstC in these highly resistant subpopulations. In conclusion, the presence of low-affinity pbp2x enables certain pneumococcal colonies to survive in the presence of β-lactams. Upregulation of phosphate ABC transporter genes may represent a reversible adaptation to antibiotic stress.


Antimicrobial Agents and Chemotherapy | 2015

Mechanism of β-Lactam Action in Streptococcus pneumoniae: the Piperacillin Paradox

Jules Philippe; Benoit Gallet; Cécile Morlot; Dalia Denapaite; Regine Hakenbeck; Yuxin Chen; Thierry Vernet; André Zapun

ABSTRACT The human pathogen Streptococcus pneumoniae has been treated for decades with β-lactam antibiotics. Its resistance is now widespread, mediated by the expression of mosaic variants of the target enzymes, the penicillin-binding proteins (PBPs). Understanding the mode of action of β-lactams, not only in molecular detail but also in their physiological consequences, will be crucial to improving these drugs and any counterresistances. In this work, we investigate the piperacillin paradox, by which this β-lactam selects primarily variants of PBP2b, whereas its most reactive target is PBP2x. These PBPs are both essential monofunctional transpeptidases involved in peptidoglycan assembly. PBP2x participates in septal synthesis, while PBP2b functions in peripheral elongation. The formation of the “lemon”-shaped cells induced by piperacillin treatment is consistent with the inhibition of PBP2x. Following the examination of treated and untreated cells by electron microscopy, the localization of the PBPs by epifluorescence microscopy, and the determination of the inhibition time course of the different PBPs, we propose a model of peptidoglycan assembly that accounts for the piperacillin paradox.

Collaboration


Dive into the Dalia Denapaite's collaboration.

Top Co-Authors

Avatar

Regine Hakenbeck

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar

Reinhold Brückner

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar

Patrick Maurer

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar

Inga Schweizer

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar

Martin Rieger

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar

Katharina Peters

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar

Daslav Hranueli

University of Strathclyde

View shared research outputs
Top Co-Authors

Avatar

Bernhard Henrich

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar

Christoph Stahlmann

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar

John Cullum

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge