Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daliang Ning is active.

Publication


Featured researches published by Daliang Ning.


Nature Communications | 2016

Temperature mediates continental-scale diversity of microbes in forest soils

Jizhong Zhou; Ye Deng; Lina Shen; Chongqing Wen; Qingyun Yan; Daliang Ning; Yujia Qin; Kai Xue; Liyou Wu; Zhili He; James W. Voordeckers; Joy D. Van Nostrand; Vanessa Buzzard; Sean T. Michaletz; Brian J. Enquist; Michael D. Weiser; Michael Kaspari; Robert B. Waide; Yunfeng Yang; James H. Brown

Climate warming is increasingly leading to marked changes in plant and animal biodiversity, but it remains unclear how temperatures affect microbial biodiversity, particularly in terrestrial soils. Here we show that, in accordance with metabolic theory of ecology, taxonomic and phylogenetic diversity of soil bacteria, fungi and nitrogen fixers are all better predicted by variation in environmental temperature than pH. However, the rates of diversity turnover across the global temperature gradients are substantially lower than those recorded for trees and animals, suggesting that the diversity of plant, animal and soil microbial communities show differential responses to climate change. To the best of our knowledge, this is the first study demonstrating that the diversity of different microbial groups has significantly lower rates of turnover across temperature gradients than other major taxa, which has important implications for assessing the effects of human-caused changes in climate, land use and other factors.


Microbiology and Molecular Biology Reviews | 2017

Stochastic Community Assembly: Does It Matter in Microbial Ecology?

Jizhong Zhou; Daliang Ning

SUMMARY Understanding the mechanisms controlling community diversity, functions, succession, and biogeography is a central, but poorly understood, topic in ecology, particularly in microbial ecology. Although stochastic processes are believed to play nonnegligible roles in shaping community structure, their importance relative to deterministic processes is hotly debated. The importance of ecological stochasticity in shaping microbial community structure is far less appreciated. Some of the main reasons for such heavy debates are the difficulty in defining stochasticity and the diverse methods used for delineating stochasticity. Here, we provide a critical review and synthesis of data from the most recent studies on stochastic community assembly in microbial ecology. We then describe both stochastic and deterministic components embedded in various ecological processes, including selection, dispersal, diversification, and drift. We also describe different approaches for inferring stochasticity from observational diversity patterns and highlight experimental approaches for delineating ecological stochasticity in microbial communities. In addition, we highlight research challenges, gaps, and future directions for microbial community assembly research.


PLOS ONE | 2017

Evaluation of the reproducibility of amplicon sequencing with Illumina MiSeq platform

Chongqing Wen; Linwei Wu; Yujia Qin; J. D. Van Nostrand; Daliang Ning; Bo Sun; Kai Xue; Feifei Liu; Ye Deng; Yili Liang; Jizhong Zhou

Illumina’s MiSeq has become the dominant platform for gene amplicon sequencing in microbial ecology studies; however, various technical concerns, such as reproducibility, still exist. To assess reproducibility, 16S rRNA gene amplicons from 18 soil samples of a reciprocal transplantation experiment were sequenced on an Illumina MiSeq. The V4 region of 16S rRNA gene from each sample was sequenced in triplicate with each replicate having a unique barcode. The average OTU overlap, without considering sequence abundance, at a rarefaction level of 10,323 sequences was 33.4±2.1% and 20.2±1.7% between two and among three technical replicates, respectively. When OTU sequence abundance was considered, the average sequence abundance weighted OTU overlap was 85.6±1.6% and 81.2±2.1% for two and three replicates, respectively. Removing singletons significantly increased the overlap for both (~1–3%, p<0.001). Increasing the sequencing depth to 160,000 reads by deep sequencing increased OTU overlap both when sequence abundance was considered (95%) and when not (44%). However, if singletons were not removed the overlap between two technical replicates (not considering sequence abundance) plateaus at 39% with 30,000 sequences. Diversity measures were not affected by the low overlap as α-diversities were similar among technical replicates while β-diversities (Bray-Curtis) were much smaller among technical replicates than among treatment replicates (e.g., 0.269 vs. 0.374). Higher diversity coverage, but lower OTU overlap, was observed when replicates were sequenced in separate runs. Detrended correspondence analysis indicated that while there was considerable variation among technical replicates, the reproducibility was sufficient for detecting treatment effects for the samples examined. These results suggest that although there is variation among technical replicates, amplicon sequencing on MiSeq is useful for analyzing microbial community structure if used appropriately and with caution. For example, including technical replicates, removing spurious sequences and unrepresentative OTUs, using a clustering method with a high stringency for OTU generation, estimating treatment effects at higher taxonomic levels, and adapting the unique molecular identifier (UMI) and other newly developed methods to lower PCR and sequencing error and to identify true low abundance rare species all can increase reproducibility.


Scientific Reports | 2017

Rapid Response of Eastern Mediterranean Deep Sea Microbial Communities to Oil

Jiang Liu; Stephen M. Techtmann; Hannah L. Woo; Daliang Ning; Julian L. Fortney; Terry C. Hazen

Deep marine oil spills like the Deepwater Horizon (DWH) in the Gulf of Mexico have the potential to drastically impact marine systems. Crude oil contamination in marine systems remains a concern, especially for countries around the Mediterranean Sea with off shore oil production. The goal of this study was to investigate the response of indigenous microbial communities to crude oil in the deep Eastern Mediterranean Sea (E. Med.) water column and to minimize potential bias associated with storage and shifts in microbial community structure from sample storage. 16S rRNA amplicon sequencing was combined with GeoChip metagenomic analysis to monitor the microbial community changes to the crude oil and dispersant in on-ship microcosms set up immediately after water collection. After 3 days of incubation at 14 °C, the microbial communities from two different water depths: 824 m and 1210 m became dominated by well-known oil degrading bacteria. The archaeal population and the overall microbial community diversity drastically decreased. Similarly, GeoChip metagenomic analysis revealed a tremendous enrichment of genes related to oil biodegradation, which was consistent with the results from the DWH oil spill. These results highlight a rapid microbial adaption to oil contamination in the deep E. Med., and indicate strong oil biodegradation potential.


Molecular Ecology | 2017

Nearly a decade-long repeatable seasonal diversity patterns of bacterioplankton communities in the eutrophic Lake Donghu (Wuhan, China)

Qingyun Yan; James C. Stegen; Yuhe Yu; Ye Deng; Xinghao Li; Shu Wu; L. Dai; Xiang Zhang; Jinjin Li; Chun Wang; Jiajia Ni; Xuemei Li; Hongjuan Hu; Fanshu Xiao; Weisong Feng; Daliang Ning; Zhili He; Joy D. Van Nostrand; Liyou Wu; Jizhong Zhou

Uncovering which environmental factors govern community diversity patterns and how ecological processes drive community turnover are key questions related to understand the community assembly. However, the ecological mechanisms regulating long‐term variations of bacterioplankton communities in lake ecosystems remain poorly understood. Here we present nearly a decade‐long study of bacterioplankton communities from the eutrophic Lake Donghu (Wuhan, China) using 16S rRNA gene amplicon sequencing with MiSeq platform. We found strong repeatable seasonal diversity patterns in terms of both common (detected in more than 50% samples) and dominant (relative abundance >1%) bacterial taxa turnover. Moreover, community composition tracked the seasonal temperature gradient, indicating that temperature is a key environmental factor controlling observed diversity patterns. Total phosphorus also contributed significantly to the seasonal shifts in bacterioplankton composition. However, any spatial pattern of bacterioplankton communities across the main lake areas within season was overwhelmed by their temporal variabilities. Phylogenetic analysis further indicated that 75%–82% of community turnover was governed by homogeneous selection due to consistent environmental conditions within seasons, suggesting that the microbial communities in Lake Donghu are mainly controlled by niche‐based processes. Therefore, dominant niches available within seasons might be occupied by similar combinations of bacterial taxa with modest dispersal rates throughout different lake areas.


Mbio | 2018

Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning

Zhili He; Ping Zhang; Linwei Wu; Andrea M. Rocha; Quichao Tu; Zhou Shi; Bo Wu; Yujia Qin; Jianjun Wang; Qingyun Yan; Daniel Curtis; Daliang Ning; Joy D. Van Nostrand; Liyou Wu; Yunfeng Yang; Dwayne A. Elias; David B. Watson; Michael W. W. Adams; Matthew W. Fields; Eric J. Alm; Terry C. Hazen; Paul D. Adams; Adam P. Arkin; Jizhong Zhou

ABSTRACT Contamination from anthropogenic activities has significantly impacted Earth’s biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN), representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate) increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminants would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate) increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5) increased significantly (P < 0.05) as uranium or nitrate increased, and their changes could be used to successfully predict uranium and nitrate contamination and ecosystem functioning. This study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning. IMPORTANCE Disentangling the relationships between biodiversity and ecosystem functioning is an important but poorly understood topic in ecology. Predicting ecosystem functioning on the basis of biodiversity is even more difficult, particularly with microbial biomarkers. As an exploratory effort, this study used key microbial functional genes as biomarkers to provide predictive understanding of environmental contamination and ecosystem functioning. The results indicated that the overall functional gene richness/diversity decreased as uranium increased in groundwater, while specific key microbial guilds increased significantly as uranium or nitrate increased. These key microbial functional genes could be used to successfully predict environmental contamination and ecosystem functioning. This study represents a significant advance in using functional gene markers to predict the spatial distribution of environmental contaminants and ecosystem functioning toward predictive microbial ecology, which is an ultimate goal of microbial ecology. Disentangling the relationships between biodiversity and ecosystem functioning is an important but poorly understood topic in ecology. Predicting ecosystem functioning on the basis of biodiversity is even more difficult, particularly with microbial biomarkers. As an exploratory effort, this study used key microbial functional genes as biomarkers to provide predictive understanding of environmental contamination and ecosystem functioning. The results indicated that the overall functional gene richness/diversity decreased as uranium increased in groundwater, while specific key microbial guilds increased significantly as uranium or nitrate increased. These key microbial functional genes could be used to successfully predict environmental contamination and ecosystem functioning. This study represents a significant advance in using functional gene markers to predict the spatial distribution of environmental contaminants and ecosystem functioning toward predictive microbial ecology, which is an ultimate goal of microbial ecology.


The ISME Journal | 2018

Oral microbiota of periodontal health and disease and their changes after nonsurgical periodontal therapy

Casey Chen; Chris Hemme; Joan Beleno; Zhou Jason Shi; Daliang Ning; Yujia Qin; Qichao Tu; Michael G. Jorgensen; Zhili He; Liyou Wu; Jizhong Zhou

This study examined the microbial diversity and community assembly of oral microbiota in periodontal health and disease and after nonsurgical periodontal treatment. The V4 region of 16S rRNA gene from DNA of 238 saliva and subgingival samples of 21 healthy and 48 diseased subjects was amplified and sequenced. Among 1979 OTUs identified, 28 were overabundant in diseased plaque. Six of these taxa were also overabundant in diseased saliva. Twelve OTUs were overabundant in healthy plaque. There was a trend for disease-associated taxa to decrease and health-associated taxa to increase after treatment with notable variations among individual sites. Network analysis revealed modularity of the microbial communities and identified several health- and disease-specific modules. Ecological drift was a major factor that governed community turnovers in both plaque and saliva. Dispersal limitation and homogeneous selection affected the community assembly in plaque, with the additional contribution of homogenizing dispersal for plaque within individuals. Homogeneous selection and dispersal limitation played important roles, respectively, in healthy saliva and diseased pre-treatment saliva between individuals. Our results revealed distinctions in both taxa and assembly processes of oral microbiota between periodontal health and disease. Furthermore, the community assembly analysis has identified potentially effective approaches for managing periodontitis.


Environmental Science & Technology | 2018

Biodegradation of Polyethylene and Plastic Mixtures in Mealworms (Larvae of Tenebrio molitor) and Effects on the Gut Microbiome

Anja Malawi Brandon; Shu-Hong Gao; Renmao Tian; Daliang Ning; Shan-Shan Yang; Jizhong Zhou; Wei-Min Wu; Craig S. Criddle

Recent studies have demonstrated the ability for polystyrene (PS) degradation within the gut of mealworms ( Tenebrio molitor). To determine whether plastics may be broadly susceptible to biodegradation within mealworms, we evaluated the fate of polyethylene (PE) and mixtures (PE + PS). We find that PE biodegrades at comparable rates to PS. Mass balances indicate conversion of up 49.0 ± 1.4% of the ingested PE into a putative gas fraction (CO2). The molecular weights ( Mn) of egested polymer residues decreased by 40.1 ± 8.5% in PE-fed mealworms and by 12.8 ± 3.1% in PS-fed mealworms. NMR and FTIR analyses revealed chemical modifications consistent with degradation and partial oxidation of the polymer. Mixtures likewise degraded. Our results are consistent with a nonspecific degradation mechanism. Analysis of the gut microbiome by next-generation sequencing revealed two OTUs ( Citrobacter sp. and Kosakonia sp.) strongly associated with both PE and PS as well as OTUs unique to each plastic. Our results suggest that adaptability of the mealworm gut microbiome enables degradation of chemically dissimilar plastics.


Nature Communications | 2017

Correspondence: Reply to ‘Analytical flaws in a continental-scale forest soil microbial diversity study’

Jizhong Zhou; Ye Deng; Lina Shen; Chongqing Wen; Qingyun Yan; Daliang Ning; Yujia Qin; Kai Xue; Liyou Wu; Zhili He; James W. Voordeckers; Joy D. Van Nostrand; Vanessa Buzzard; Sean T. Michaletz; Brian J. Enquist; Michael D. Weiser; Michael Kaspari; Robert B. Waide; Yunfeng Yang; James H. Brown

Author(s): Zhou, Jizhong; Deng, Ye; Shen, Lina; Wen, Chongqing; Yan, Qingyun; Ning, Daliang; Qin, Yujia; Xue, Kai; Wu, Liyou; He, Zhili; Voordeckers, James W; Van Nostrand, Joy D; Buzzard, Vanessa; Michaletz, Sean T; Enquist, Brian J; Weiser, Michael D; Kaspari, Michael; Waide, Robert; Yang, Yunfeng; Brown, James H


Functional Ecology | 2018

Temperature determines the diversity and structure of N2O‐reducing microbial assemblages

Bo Wu; Feifei Liu; Michael D. Weiser; Daliang Ning; Jordan G. Okie; Lina Shen; Juan Li; Benli Chai; Ye Deng; Kai Feng; Liyou Wu; Shouwen Chen; Jizhong Zhou; Zhili He

Author(s): Wu, B; Liu, F; Weiser, MD; Ning, D; Okie, JG; Shen, L; Li, J; Chai, B; Deng, Y; Feng, K; Wu, L; Chen, S; Zhou, J; He, Z | Abstract:

Collaboration


Dive into the Daliang Ning's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liyou Wu

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar

Zhili He

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar

Yujia Qin

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ye Deng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kai Xue

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge