Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dalibor Vojtěch is active.

Publication


Featured researches published by Dalibor Vojtěch.


Materials Science and Engineering: C | 2013

Properties of porous magnesium prepared by powder metallurgy.

Jaroslav Čapek; Dalibor Vojtěch

Porous magnesium-based materials are biodegradable and promising for use in orthopaedic applications, but their applications are hampered by their difficult fabrication. This work reports the preparation of porous magnesium materials by a powder metallurgy technique using ammonium bicarbonate as spacer particles. The porosity of the materials depended on the amount of ammonium bicarbonate and was found to have strong negative effects on flexural strength and corrosion behaviour. However, the flexural strength of materials with porosities of up to 28 vol.% was higher than the flexural strength of non-metallic biomaterials and comparable with that of natural bone.


Materials Science and Engineering: C | 2016

Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys.

Jiří Kubásek; Dalibor Vojtěch; Eva Jablonská; I. Pospíšilová; Jan Lipov; Tomáš Ruml

Zn-(0-1.6)Mg (in wt.%) alloys were prepared by hot extrusion at 300 °C. The structure, mechanical properties and in vitro biocompatibility of the alloys were investigated. The hot-extruded magnesium-based WE43 alloy was used as a control. Mechanical properties were evaluated by hardness, compressive and tensile testing. The cytotoxicity, genotoxicity (comet assay) and mutagenicity (Ames test) of the alloy extracts and ZnCl2 solutions were evaluated with the use of murine fibroblasts L929 and human osteosarcoma cell line U-2 OS. The microstructure of the Zn alloys consisted of recrystallized Zn grains of 12 μm in size and fine Mg2Zn11 particles arranged parallel to the hot extrusion direction. Mechanical tests revealed that the hardness and strength increased with increasing Mg concentration. The Zn-0.8 Mg alloys showed the best combination of tensile mechanical properties (tensile yield strength of 203 MPa, ultimate tensile strength of 301 MPa and elongation of 15%). At higher Mg concentrations the plasticity of Zn-Mg alloys was deteriorated. Cytotoxicity tests with alloy extracts and ZnCl2 solutions proved the maximum safe Zn(2+) concentrations of 120 μM and 80 μM for the U-2 OS and L929 cell lines, respectively. Ames test with extracts of alloys indicated that the extracts were not mutagenic. The comet assay demonstrated that 1-day extracts of alloys were not genotoxic for U-2 OS and L929 cell lines after 1-day incubation.


Materials Science and Engineering: C | 2013

Structure, mechanical properties, corrosion behavior and cytotoxicity of biodegradable Mg–X (X = Sn, Ga, In) alloys

Jiří Kubásek; Dalibor Vojtěch; Jan Lipov; Tomáš Ruml

As-cast Mg-Sn, Mg-Ga and Mg-In alloys containing 1-7 wt.% of alloying elements were studied in this work. Structural and chemical analysis of the alloys was performed by using light and scanning electron microscopy, energy dispersive spectrometry, x-ray diffraction, x-ray photoelectron spectroscopy and glow discharge spectrometry. Mechanical properties were determined by Vickers hardness measurements and tensile testing. Corrosion behavior in a simulated physiological solution (9 g/l NaCl) was studied by immersion tests and potentiodynamic measurements. The cytotoxicity effect of the alloys on human osteosarcoma cells (U-2 OS) was determined by an indirect contact assay. Structural investigation revealed the dendritic morphology of the as-cast alloys with the presence of secondary eutectic phases in the Mg-Sn and Mg-Ga alloys. All the alloying elements showed hardening and strengthening effects on magnesium. This effect was the most pronounced in the case of Ga. All the alloying elements at low concentrations of approximately 1 wt.% were also shown to positively affect the corrosion resistance of Mg. But at higher concentrations of Ga and Sn the corrosion resistance worsened due to galvanic effects of secondary phases. Cytotoxicity tests indicated that Ga had the lowest toxicity, followed by Sn. The most severe toxicity was observed in the case of In.


Materials Science and Engineering: C | 2014

Effect of sintering conditions on the microstructural and mechanical characteristics of porous magnesium materials prepared by powder metallurgy

Jaroslav Čapek; Dalibor Vojtěch

There has recently been an increased demand for porous magnesium materials in many applications, especially in the medical field. Powder metallurgy appears to be a promising approach for the preparation of such materials. Many works have dealt with the preparation of porous magnesium; however, the effect of sintering conditions on material properties has rarely been investigated. In this work, we investigated porous magnesium samples that were prepared by powder metallurgy using ammonium bicarbonate spacer particles. The effects of the purity of the argon atmosphere and sintering time on the microstructure (SEM, EDX and XRD) and mechanical behaviour (universal loading machine and Vickers hardness tester) of porous magnesium were studied. The porosities of the prepared samples ranged from 24 to 29 vol.% depending on the sintering conditions. The purity of atmosphere played a significant role when the sintering time exceeded 6h. Under a gettered argon atmosphere, a prolonged sintering time enhanced diffusion connections between magnesium particles and improved the mechanical properties of the samples, whereas under a technical argon atmosphere, oxidation at the particle surfaces caused deterioration in the mechanical properties of the samples. These results suggest that a refined atmosphere is required to improve the mechanical properties of porous magnesium.


Materials Science and Engineering: C | 2016

Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting

Jaroslav Čapek; Markéta Machová; Michaela Fousová; Jiří Kubásek; Dalibor Vojtěch; Jaroslav Fojt; Eva Jablonská; Jan Lipov; Tomáš Ruml

Recently, porous metallic materials have been extensively studied as candidates for use in the fabrication of scaffolds and augmentations to repair trabecular bone defects, e.g. in surroundings of joint replacements. Fabricating these complex structures by using common approaches (e.g., casting and machining) is very challenging. Therefore, rapid prototyping techniques, such as selective laser melting (SLM), have been investigated for these applications. In this study, we characterized a highly porous (87 vol.%) 316L stainless steel scaffold prepared by SLM. 316L steel was chosen because it presents a biomaterial still widely used for fabrication of joint replacements and, from the practical point of view, use of the same material for fabrication of an augmentation and a joint replacement is beneficial for corrosion prevention. The results are compared to the reported properties of two representative nonporous 316L stainless steels prepared either by SLM or casting and subsequent hot forging. The microstructural and mechanical properties and the surface chemical composition and interaction with the cells were investigated. The studied material exhibited mechanical properties that were similar to those of trabecular bone (compressive modulus of elasticity ~0.15GPa, compressive yield strength ~3MPa) and cytocompatibility after one day that was similar to that of wrought 316L stainless steel, which is a commonly used biomaterial. Based on the obtained results, SLM is a suitable method for the fabrication of porous 316L stainless steel scaffolds with highly porous structures.


Materials Science and Engineering: C | 2014

Microstructural and mechanical characteristics of porous iron prepared by powder metallurgy.

Jaroslav Čapek; Dalibor Vojtěch

The demand for porous biodegradable load-bearing implants has been increasing recently. Based on investigations of biodegradable stents, porous iron may be a suitable material for such applications. In this study, we prepared porous iron samples with porosities of 34-51 vol.% by powder metallurgy using ammonium bicarbonate as a space-holder material. We studied sample microstructure (SEM-EDX and XRD), flexural and compressive behaviors (universal loading machine) and hardness HV5 (hardness tester) of the prepared samples. Sample porosity increased with the amount of spacer in the initial mixtures. Only the pore surfaces had insignificant oxidation and no other contamination was observed. Increasing porosity decreased the mechanical properties of the samples; although, the properties were still comparable with human bone and higher than those of porous non-metallic biomaterials and porous magnesium prepared in a similar way. Based on these results, powder metallurgy appears to be a suitable method for the preparation of porous iron for orthopedic applications.


Materials Science and Engineering: C | 2016

Microstructural, mechanical, corrosion and cytotoxicity characterization of the hot forged FeMn30(wt.%) alloy.

Jaroslav Čapek; Jiří Kubásek; Dalibor Vojtěch; Eva Jablonská; Jan Lipov; Tomáš Ruml

An interest in biodegradable metallic materials has been increasing in the last two decades. Besides magnesium based materials, iron-manganese alloys have been considered as possible candidates for fabrication of biodegradable stents and orthopedic implants. In this study, we prepared a hot forged FeMn30 (wt.%) alloy and investigated its microstructural, mechanical and corrosion characteristics as well as cytotoxicity towards mouse L 929 fibroblasts. The obtained results were compared with those of iron. The FeMn30 alloy was composed of antiferromagnetic γ-austenite and ε-martensite phases and possessed better mechanical properties than iron and even that of 316 L steel. The potentiodynamic measurements in simulated body fluids showed that alloying with manganese lowered the free corrosion potential and enhanced the corrosion rate, compared to iron. On the other hand, the corrosion rate of FeMn30 obtained by a semi-static immersion test was significantly lower than that of iron, most likely due to a higher degree of alkalization in sample surrounding. The presence of manganese in the alloy slightly enhanced toxicity towards the L 929 cells; however, the toxicity did not exceed the allowed limit and FeMn30 alloy fulfilled the requirements of the ISO 10993-5 standard.


Materials Science and Engineering: C | 2017

A novel high-strength and highly corrosive biodegradable Fe-Pd alloy: Structural, mechanical and in vitro corrosion and cytotoxicity study

Jaroslav Čapek; Šárka Msallamová; Eva Jablonská; Jan Lipov; Dalibor Vojtěch

Recently, iron-based materials have been considered as candidates for the fabrication of biodegradable load-bearing implants. Alloying with palladium has been found to be a suitable approach to enhance the insufficient corrosion rate of iron-based alloys. In this work, we have extensively compared the microstructure, the mechanical and corrosion properties, and the cytotoxicity of an FePd2 (wt%) alloy prepared by three different routes - casting, mechanical alloying and spark plasma sintering (SPS), and mechanical alloying and the space holder technique (SHT). The properties of the FePd2 (wt%) were compared with pure Fe prepared in the same processes. The preparation route significantly influenced the material properties. Materials prepared by SPS possessed the highest values of mechanical properties (CYS~750-850MPa) and higher corrosion rates than the casted materials. Materials prepared by SHT contained approximately 60% porosity; therefore, their mechanical properties reached the lowest values, and they had the highest corrosion rates, approximately 0.7-1.2mm/a. Highly porous FePd2 was tested in vitro according to the ISO 10993-5 standard using L929 cells, and two-fold diluted extracts showed acceptable cytocompatibility. In general, alloying with Pd enhanced both mechanical properties and corrosion rates and did not decrease the cytocompatibility of the studied materials.


Micron | 2013

Selective aluminum dissolution as a means to observe the microstructure of nanocrystalline intermetallic phases from Al-Fe-Cr-Ti-Ce rapidly solidified alloy.

Alena Michalcová; Dalibor Vojtěch; Pavel Novák

Rapidly solidified aluminum alloys are promising materials with very fine microstructure. The microscopy observation of these materials is complicated due to overlay of fcc-Al matrix and different intermetallic phases. A possible way to solve this problem is to dissolve the Al matrix. By this process powder formed by single intermetallic phase particles is obtained. In this paper a new aqueous based dissolving agent for Al-based alloy is presented. The influence of oxidation agent (FeCl(3)) concentration on quality of extraction process was studied.


Defect and Diffusion Forum | 2007

Mechanism and Kinetics of Plasma Nitriding of the Nb-Alloyed PM Tool Steel

Pavel Novák; Dalibor Vojtěch; Jan Šerák; Michal Novák; Barbora Bártová

The aim of this work was to describe the mechanism and kinetics of plasma nitriding of a Nb-containing PM (powder metallurgy) tool steel. Material containing 2.5 wt.% C, 3.3% Si, 6.2% Cr, 2.2% Mo, 2.6% V, 2.6% Nb and 1.0% W was prepared by nitrogen melt atomization and hot isostatic pressing. Heat-treated steel (quenching from 1100 °C, triple tempering at 550 °C for 1h) was plasma nitrided at temperatures ranging from 470 °C to 530 °C / 30 - 180 min. Light microscopy, TEM, SEM and WDS were used to study the nitrided steel. It has been shown, that nitriding at 470°C leads to the formation of thin layers composed only of a diffusion zone containing nitrogen-rich martensite and fine nitride precipitates, no layer of nitrides is formed on the surface. Nitriding is probably controlled by the nitrogen diffusion in martensite to the material or by the processes in the nitriding atmosphere at this temperature. Nitriding at the temperature of 500°C and more leads to the formation of a continuous layer of nitrides and carbonitrides on the surface that limits further nitrogen diffusion. Niobium, as a prospective element in tool steels, was not found to play a role in the formation of the nitrided layer directly. Niobium replaces vanadium in very thermodynamically stable primary MC carbides. This results in higher vanadium content in others less stable carbides and in the matrix. Due to this effect, higher portion of vanadium can precipitate as VC carbides and VN nitrides during heat treatment and nitriding, respectively.

Collaboration


Dive into the Dalibor Vojtěch's collaboration.

Top Co-Authors

Avatar

Pavel Novák

Institute of Chemical Technology in Prague

View shared research outputs
Top Co-Authors

Avatar

Alena Michalcová

Institute of Chemical Technology in Prague

View shared research outputs
Top Co-Authors

Avatar

Jiří Kubásek

Institute of Chemical Technology in Prague

View shared research outputs
Top Co-Authors

Avatar

Filip Průša

Institute of Chemical Technology in Prague

View shared research outputs
Top Co-Authors

Avatar

Jan Šerák

Institute of Chemical Technology in Prague

View shared research outputs
Top Co-Authors

Avatar

Ivo Marek

Institute of Chemical Technology in Prague

View shared research outputs
Top Co-Authors

Avatar

Jaroslav Čapek

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Tomáš František Kubatík

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Barbora Bártová

Institute of Chemical Technology in Prague

View shared research outputs
Top Co-Authors

Avatar

Drahomír Dvorský

Institute of Chemical Technology in Prague

View shared research outputs
Researchain Logo
Decentralizing Knowledge