Dalila B. M. M. Fontes
University of Porto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dalila B. M. M. Fontes.
European Journal of Operational Research | 2008
Dalila B. M. M. Fontes
In this work, we address investment decisions in production systems by using real options. As is standard in literature, the stochastic variable is assumed to be normally distributed and then approximated by a binomial distribution, resulting in a binomial lattice. The methodology establishes a discrete-valued lattice of possible future values of the underlying stochastic variable (demand in our case) and then, computes the project value. We have developed and implemented stochastic dynamic programming models both for fixed and flexible capacity systems. In the former case, we consider three standard options: the option to postpone investment, the option to abandon investment, and the option to temporarily shut-down production. For the latter case, we introduce the option of corrective action, in terms of production capacity, that the management can take during the project by considering the existence of one of the following: (i) a capacity expansion option; (ii) a capacity contraction option; or (iii) an option considering both expansion and contraction. The full flexible capacity model, where both the contraction and expansion options exist, leads, as expected, to a better project predicted value and thus, investment policy. However, we have also found that the capacity strategy obtained from the flexible capacity model, when applied to specific demand data series, often does not lead to a better investment decision. This might seem surprising, at first, but it can be explained by the inaccuracy of the binomial model. The binomial model tends to undervalue future decreases in the stochastic variable (demand), while at the same time tending to overvalue an increase in future demand values.
Networks | 2003
Dalila B. M. M. Fontes; Eleni Hadjiconstantinou; Nicos Christofides
In this paper, we describe a heuristic algorithm based on local search for the Single-Source Uncapacitated (SSU) concave Minimum-Cost Network Flow Problem (MCNFP). We present a new technique for creating different and informed initial solutions to restart the local search, thereby improving the quality of the resulting feasible solutions (upper bounds). Computational results on different classes of test problems indicate the effectiveness of the proposed method in generating basic feasible solutions for the SSU concave MCNFP very near to a global optimum. A maximum upper bound percentage error of 0.07% is reported for all problem instances for which an optimal solution has been found by a branch-and-bound method.
European Journal of Operational Research | 2006
Dalila B. M. M. Fontes; Eleni Hadjiconstantinou; Nicos Christofides
In this paper, we describe a dynamic programming approach to solve optimally the single-source uncapacitated minimum cost network flow problem with general concave costs. This class of problems is known to be NP-Hard and there is a scarcity of methods to solve them in their full generality. The algorithms previously developed critically depend on the type of cost functions considered and on the number of nonlinear arc costs. Here, a new dynamic programming approach that does not depend on any of these factors is proposed. Computational experiments were performed using randomly generated problems. The computational results reported for small and medium size problems indicate the effectiveness of the proposed approach.
Lecture Notes in Control and Information Sciences | 2009
Fernando A. C. C. Fontes; Dalila B. M. M. Fontes; Amélia Caldeira
We propose a two-layer scheme to control a set of vehicles moving in a formation. The first layer, the trajectory controller, is a nonlinear controller since most vehicles are nonholonomic systems and require a nonlinear, even discontinuous, feedback to stabilize them. The trajectory controller, a model predictive controller, computes centrally a bang-bang control law and only a small set of parameters need to be transmitted to each vehicle at each iteration. The second layer, the formation controller, aims to compensate for small changes around a nominal trajectory maintaining the relative po- sitions between vehicles. We argue that the formation control can be, in most cases, adequately carried out by a linear model predictive controller accommodating input and state constraints. This has the advantage that the control laws for each vehicle are simple piecewise affine feedback laws that can be pre-computed off-line and implemented in a distributed way in each vehicle. Although several optimization problems have to be solved, the control strategy proposed results in a simple and efficient implementation where no optimization problem needs to be solved in real-time at each vehicle.
Journal of Global Optimization | 2006
Dalila B. M. M. Fontes; Eleni Hadjiconstantinou; Nicos Christofides
In this paper a Branch-and-Bound (BB) algorithm is developed to obtain an optimal solution to the single source uncapacitated minimum cost Network Flow Problem (NFP) with general concave costs. Concave NFPs are NP-Hard, even for the simplest version therefore, there is a scarcity of exact methods to address them in their full generality. The BB algorithm presented here can be used to solve optimally single source uncapacitated minimum cost NFPs with any kind of concave arc costs. The bounding is based on the computation of lower bounds derived from state space relaxations of a dynamic programming formulation. The relaxations, which are the subject of the paper (Fontes et al., 2005b) and also briefly discussed here, involve the use of non-injective mapping functions, which guarantee a reduction on the cardinality of the state space. Branching is performed by either fixing an arc as part of the final solution or by removing it from the final solution. Computational results are reported and compared to available alternative methods for addressing the same type of problems. It could be concluded that our BB algorithm has better performance and the results have also shown evidence that it has a sub-exponential time growth.
Journal of Heuristics | 2013
Marta S.R. Monteiro; Dalila B. M. M. Fontes; Fernando A. C. C. Fontes
In this work we address the Single-Source Uncapacitated Minimum Cost Network Flow Problem with concave cost functions. This problem is NP-Hard, therefore we propose a hybrid heuristic to solve it. Our goal is not only to apply an ant colony optimization (ACO) algorithm to such a problem, but also to provide an insight on the behaviour of the parameters in the performance of the algorithm. The performance of the ACO algorithm is improved with the hybridization of a local search (LS) procedure. The core ACO procedure is used to mainly deal with the exploration of the search space, while the LS is incorporated to further cope with the exploitation of the best solutions found. The method we have developed has proven to be very efficient while solving both small and large size problem instances. The problems we have used to test the algorithm were previously solved by other authors using other population based heuristics. Our algorithm was able to improve upon some of their results in terms of solution quality, proving that the HACO algorithm is a very good alternative approach to solve these problems. In addition, our algorithm is substantially faster at achieving these improved solutions. Furthermore, the magnitude of the reduction of the computational requirements grows with problem size.
Optimization Letters | 2013
Dalila B. M. M. Fontes; José Fernando Gonçalves
Genetic algorithms and other evolutionary algorithms have been successfully applied to solve constrained minimum spanning tree problems in a variety of communication network design problems. In this paper, we enlarge the application of these types of algorithms by presenting a multi-population hybrid genetic algorithm to another communication design problem. This new problem is modeled through a hop-constrained minimum spanning tree also exhibiting the characteristic of flows. All nodes, except for the root node, have a nonnegative flow requirement. In addition to the fixed charge costs, nonlinear flow dependent costs are also considered. This problem is an extension of the well know NP-hard hop-constrained Minimum Spanning Tree problem and we have termed it hop-constrained minimum cost flow spanning tree problem. The efficiency and effectiveness of the proposed method can be seen from the computational results reported.
Journal of Combinatorial Optimization | 2014
Luís A. C. Roque; Dalila B. M. M. Fontes; Fernando A. C. C. Fontes
This work proposes a hybrid genetic algorithm (GA) to address the unit commitment (UC) problem. In the UC problem, the goal is to schedule a subset of a given group of electrical power generating units and also to determine their production output in order to meet energy demands at minimum cost. In addition, the solution must satisfy a set of technological and operational constraints. The algorithm developed is a hybrid biased random key genetic algorithm (HBRKGA). It uses random keys to encode the solutions and introduces bias both in the parent selection procedure and in the crossover strategy. To intensify the search close to good solutions, the GA is hybridized with local search. Tests have been performed on benchmark large-scale power systems. The computational results demonstrate that the HBRKGA is effective and efficient. In addition, it is also shown that it improves the solutions obtained by current state-of-the-art methodologies.
symposium on experimental and efficient algorithms | 2011
Luís A. C. Roque; Dalila B. M. M. Fontes; Fernando A. C. C. Fontes
A Biased Random Key Genetic Algorithm (BRKGA) is proposed to find solutions for the unit commitment problem. In this problem, one wishes to schedule energy production on a given set of thermal generation units in order to meet energy demands at minimum cost, while satisfying a set of technological and spinning reserve constraints. In the BRKGA, solutions are encoded by using random keys, which are represented as vectors of real numbers in the interval [0,1]. The GA proposed is a variant of the random key genetic algorithm, since bias is introduced in the parent selection procedure, as well as in the crossover strategy. Tests have been performed on benchmark large-scale power systems of up to 100 units for a 24 hours period. The results obtained have shown the proposed methodology to be an effective and efficient tool for finding solutions to large-scale unit commitment problems. Furthermore, from the comparisons made it can be concluded that the results produced improve upon some of the best known solutions.
genetic and evolutionary computation conference | 2011
Marta S.R. Monteiro; Dalila B. M. M. Fontes; Fernando A. C. C. Fontes
In this work we address the Singe-Source Uncapacitated Minimum Cost Network Flow Problem with concave cost functions. Given that this problem is of a combinatorial nature and also that the total costs are nonlinear, we propose a hybrid heuristic to solve it. In this type of algorithms one usually tries to manage two conflicting aspects of searching behaviour: exploration, the algorithms ability to search broadly through the search space; and exploitation, the algorithm ability to search locally around good solutions that have been found previously. In our case, we use an Ant Colony Optimization algorithm to mainly deal with the exploration, and a Local Search algorithm to cope with the exploitation of the search space. Our method proves to be very efficient while solving both small and large size problem instances. The problems we have used to test the algorithm were previously solved by other authors using other population based heuristics and our algorithm was able to improve upon their results, both in terms of computing time and solution quality.