Dalyir Pretto
University of California, Davis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dalyir Pretto.
American Journal of Medical Genetics Part A | 2013
Magdalena Dziembowska; Dalyir Pretto; Aleksandra Janusz; Leszek Kaczmarek; Mary Jacena Leigh; Nielsen Gabriel; Blythe Durbin-Johnson; Randi J. Hagerman; Flora Tassone
Fragile X syndrome (FXS) is a neurodevelopmental disorder characterized by lack of the FMR1 protein, FMRP, a translational repressor. Its absence leads to up‐regulation of locally translated proteins involved in synaptic transmission and plasticity, including the matrix metalloproteinase‐9 (MMP‐9). In the Fmr1 knock‐out (KO), a mouse model of FXS, an abnormal elevated expression of MMP‐9 in the brain was pharmacologically down‐regulated after treatment with the tetracycline derivative minocycline. Moreover, the rescue of immature dendritic spine morphology and a significant improvement of abnormal behavior were associated with down‐regulation of MMP‐9. Here, we report on high plasma activity of MMP‐9 in individuals with FXS. In addition, we investigate MMP‐9 changes in patients with FXS who have gone through a minocycline controlled clinical trial and correlate MMP‐9 activity to clinical observations. The results of this study suggest that, in humans, activity levels of MMP‐9 are lowered by minocycline and that, in some cases, changes in MMP‐9 activity are positively associated with improvement based on clinical measures.
Frontiers in Genetics | 2014
Dalyir Pretto; Carolyn M. Yrigollen; Hiu Tung Tang; John Williamson; Glenda M. Espinal; Chris K. Iwahashi; Blythe Durbin-Johnson; Randi J. Hagerman; Paul J. Hagerman; Flora Tassone
Expansions of more than 200 CGG repeats (full mutation) in the FMR1 gene give rise to fragile X syndrome (FXS) through a process that generally involves hypermethylation of the FMR1 promoter region and gene silencing, resulting in absence of expression of the encoded protein, FMRP. However, mosaicism with alleles differing in size and extent of methylation often exist within or between tissues of individuals with FXS. In the current work, CGG-repeat lengths and methylation status were assessed for eighteen individuals with FXS, including 13 mosaics, for which peripheral blood cells (PBMCs) and primary fibroblast cells were available. Our results show that for both PBMCs and fibroblasts, FMR1 mRNA and FMRP expression are directly correlated with the percent of methylation of the FMR1 allele. In addition, Full Scale IQ scores were inversely correlated with the percent methylation and positively correlated with higher FMRP expression. These latter results point toward a positive impact on cognition for full mutation mosaics with lower methylation compared to individuals with fully methylated, full mutation alleles. However, we did not observe a significant reduction in the number of seizures, nor in the severity of hyperactivity or autism spectrum disorder, among individuals with mosaic genotypes in the presentation of FXS. These observations suggest that low, but non-zero expression of FMRP may be sufficient to positively impact cognitive function in individuals with FXS, with methylation mosaicism (lowered methylation fraction) contributing to a more positive clinical outcome.
Journal of Medical Genetics | 2014
Dalyir Pretto; Guadalupe Mendoza-Morales; Joyce Lo; Ru Cao; Andrew Hadd; Gary J. Latham; Blythe Durbin-Johnson; Randi J. Hagerman; Flora Tassone
Background Greater than 200 CGG repeats in the 5′UTR of the FMR1 gene lead to epigenetic silencing and lack of the FMR1 protein, causing fragile X Syndrome. Individual carriers of a premutation (PM) allele with 55–200 CGG repeats are typically unmethylated and can present with clinical features defined as FMR1-associated conditions. Methods Blood samples from 17 male PM carriers were assessed clinically and molecularly by Southern blot, western blot, PCR and QRT-PCR. Blood and brain tissue from an additional 18 PM males were also similarly examined. Continuous outcomes were modelled using linear regression and binary outcomes were modelled using logistic regression. Results Methylated alleles were detected in different fractions of blood cells in all PM cases (n=17). CGG repeat numbers correlated with percent of methylation and mRNA levels and, especially in the upper PM range, with greater number of clinical involvements. Inter-tissue/intra-tissue somatic instability and differences in percent methylation were observed between blood and fibroblasts (n=4) and also observed between blood and different brain regions in three of the 18 PM cases examined. CGG repeat lengths in lymphocytes remained unchanged over a period of time ranging from 2 to 6 years, three cases for whom multiple samples were available. Conclusions In addition to CGG size instability, individuals with a PM expanded allele can exhibit methylation and display more clinical features likely due to RNA toxicity and/or FMR1 silencing. The observed association between CGG repeat length and percent of methylation with the severity of the clinical phenotypes underscores the potential value of methylation in affected PM to further understand penetrance, inform diagnosis and expand treatment options.
Journal of Neurodevelopmental Disorders | 2014
Robert F. Berman; Ronald A.M. Buijsen; Karen Usdin; Elizabeth Pintado; R. Frank Kooy; Dalyir Pretto; Isaac N. Pessah; David L. Nelson; Zachary A. Zalewski; Nicholas Charlet-Bergeurand; Rob Willemsen; Renate K. Hukema
Carriers of the fragile X premutation (FPM) have CGG trinucleotide repeat expansions of between 55 and 200 in the 5′-UTR of FMR1, compared to a CGG repeat length of between 5 and 54 for the general population. Carriers were once thought to be without symptoms, but it is now recognized that they can develop a variety of early neurological symptoms as well as being at risk for developing the late onset neurodegenerative disorder fragile X-associated tremor/ataxia syndrome (FXTAS). Several mouse models have contributed to our understanding of FPM and FXTAS, and findings from studies using these models are summarized here. This review also discusses how this information is improving our understanding of the molecular and cellular abnormalities that contribute to neurobehavioral features seen in some FPM carriers and in patients with FXTAS. Mouse models show much of the pathology seen in FPM carriers and in individuals with FXTAS, including the presence of elevated levels of Fmr1 mRNA, decreased levels of fragile X mental retardation protein, and ubiquitin-positive intranuclear inclusions. Abnormalities in dendritic spine morphology in several brain regions are associated with neurocognitive deficits in spatial and temporal memory processes, impaired motor performance, and altered anxiety. In vitro studies have identified altered dendritic and synaptic architecture associated with abnormal Ca2+ dynamics and electrical network activity. FPM mice have been particularly useful in understanding the roles of Fmr1 mRNA, fragile X mental retardation protein, and translation of a potentially toxic polyglycine peptide in pathology. Finally, the potential for using these and emerging mouse models for preclinical development of therapies to improve neurological function in FXTAS is considered.
Clinical Chemistry | 2015
Dalyir Pretto; Dianna Maar; Carolyn M. Yrigollen; Jack Regan; Flora Tassone
BACKGROUND The diagnosis of 22q11 deletion syndrome (22q11DS) is often delayed or missed due to the wide spectrum of clinical involvement ranging from mild to severe, often life-threatening conditions. A delayed diagnosis can lead to life-long health issues that could be ameliorated with early intervention and treatment. Owing to the high impact of 22q11DS on public health, propositions have been made to include 22q11DS in newborn screening panels; however, the method of choice for detecting 22q11DS, fluorescent in situ hybridization, requires specialized equipment and is cumbersome for most laboratories to implement as part of their routine screening. We sought to develop a new genetic screen for 22q11DS that is rapid, cost-effective, and easily used by laboratories currently performing newborn screening. METHODS We evaluated the accuracy of multiplex droplet digital PCR (ddPCR) in the detection of copy number of 22q11DS by screening samples from 26 patients with 22q11DS blindly intermixed with 1096 blood spot cards from the general population (total n = 1122). RESULTS Multiplex ddPCR correctly identified all 22q11DS samples and distinguished between 1.5- and 3-Mb deletions, suggesting the approach is sensitive and specific for the detection of 22q11DS. CONCLUSIONS These data demonstrate the utility of multiplex ddPCR for large-scale population-based studies that screen for 22q11DS. The use of samples from blood spot cards suggests that this approach has promise for newborn screening of 22q11DS, and potentially for other microdeletion syndromes, for which early detection can positively impact clinical outcome for those affected.
Neurobiology of Aging | 2014
Dalyir Pretto; Madhur Kumar; Zhengyu Cao; Christopher L. Cunningham; Blythe Durbin-Johnson; Lihong Qi; Robert F. Berman; Stephen C. Noctor; Randi J. Hagerman; Isaac N. Pessah; Flora Tassone
A premutation (PM) expansion (55-200 CGG) in the fragile X mental retardation gene 1 causes elevated messenger RNA and reduced fragile X mental retardation gene 1 protein. Young PM carriers can develop characteristic physical features and mild cognitive disabilities. In addition, individuals with PM, particularly male carriers, are at high risk to develop fragile X-associated tremor/ataxia syndrome (FXTAS) with aging. Human postmortem FXTAS brains show extensive white matter disease in the cerebellum and the presence of intranuclear inclusions throughout the brain, although their etiologic significance is unknown. In the current work, expression levels of the metabotropic glutamate (Glu) receptor 5 and the Glu transporter excitatory amino acid transporter 1, examined by reverse transcription polymerase chain reaction and western blot analyses, were found to be reduced in the postmortem cerebellum of PM carriers with FXTAS compared with age matched controls, with higher CGG repeat number having greater reductions in both proteins. These data suggests a dysregulation of Glu signaling in PM carriers, which would likely contribute to the development and severity of FXTAS.
Translational neurodegeneration | 2013
Dalyir Pretto; Michael R. Hunsaker; Christopher L. Cunningham; Claudia M. Greco; Randi J. Hagerman; Stephen C Noctor; Deborah A. Hall; Paul J. Hagerman; Flora Tassone
Lack of the fragile X mental retardation protein leads to Fragile X syndrome (FXS) while increased levels of FMR1 mRNA, as those observed in premutation carriers can lead to Fragile X- associated tremor ataxia syndrome (FXTAS). Until recently, FXTAS had been observed only in carriers of an FMR1 premutation (55–200 CGG repeats); however the disorder has now been described in individuals carriers of an intermediate allele (45–54 CGG repeats) as well as in a subject with a full mutation with mosaicism.Here, we report on molecular and clinical data of a male FMR1 mosaic individual with full and premutation alleles. Molecular analysis of FMR1 and FMRP expression in this subject is consistent with a FXS phenotype. We observed reduced expression of FMRP in both peripheral blood and brain leading to the FXS diagnosis. In addition, a dramatic 90% depletion of both FMR1 mRNA and FMRP levels was observed in the blood, as normally observed in FXS cases, and an even greater depletion in the brain. A clinical report of this patient, at age 71, described neurodegenerative signs of parkinsonism that were likely, in retrospect, part of a FXTAS scenario as post-mortem examination shows the presence of intranuclear inclusions, the hallmark pathology of FXTAS.The findings presented in this study indicate co-morbidity for both FXS and FXTAS in this individual carrying both full and premutation FMR1 alleles. In addition, based on symptoms and pathological and molecular evidence, this report suggests the need to redefine the diagnostic criteria of FXTAS.
Journal of Medical Genetics | 2015
Dalyir Pretto; John Eid; Carolyn M. Yrigollen; Hiu Tung Tang; Erick W. Loomis; Chris Raske; Blythe Durbin-Johnson; Paul J. Hagerman; Flora Tassone
Background Over 40% of male and ∼16% of female carriers of a premutation FMR1 allele (55–200 CGG repeats) will develop fragile X-associated tremor/ataxia syndrome, an adult onset neurodegenerative disorder, while about 20% of female carriers will develop fragile X-associated primary ovarian insufficiency. Marked elevation in FMR1 mRNA transcript levels has been observed with premutation alleles, and RNA toxicity due to increased mRNA levels is the leading molecular mechanism proposed for these disorders. However, although the FMR1 gene undergoes alternative splicing, it is unknown whether all or only some of the isoforms are overexpressed in premutation carriers and which isoforms may contribute to the premutation pathology. Methods To address this question, we have applied a long-read sequencing approach using single-molecule real-time (SMRT) sequencing and qRT-PCR. Results Our SMRT sequencing analysis performed on peripheral blood mononuclear cells, fibroblasts and brain tissue samples derived from premutation carriers and controls revealed the existence of 16 isoforms of 24 predicted variants. Although the relative abundance of all mRNA isoforms was significantly increased in the premutation group, as expected based on the bulk increase in mRNA levels, there was a disproportionate (fourfold to sixfold) increase, relative to the overall increase in mRNA, in the abundance of isoforms spliced at both exons 12 and 14, specifically Iso10 and Iso10b, containing the complete exon 15 and differing only in splicing in exon 17. Conclusions These findings suggest that RNA toxicity may arise from a relative increase of all FMR1 mRNA isoforms. Interestingly, the Iso10 and Iso10b mRNA isoforms, lacking the C-terminal functional sites for fragile X mental retardation protein function, are the most increased in premutation carriers relative to normal, suggesting a functional relevance in the pathology of FMR1-associated disorders.
Brain & Development | 2017
Reem Rafik AlOlaby; Stefan R. Sweha; Marisol Silva; Blythe Durbin-Johnson; Carolyn M. Yrigollen; Dalyir Pretto; Randi J. Hagerman; Flora Tassone
OBJECTIVES Several neurotransmitters involved in brain development are altered in fragile X syndrome (FXS), the most common monogenic cause of autism spectrum disorder (ASD). Serotonin plays a vital role in synaptogenesis and postnatal brain development. Deficits in serotonin synthesis and abnormal neurogenesis were shown in young children with autism, suggesting that treating within the first years of life with a selective serotonin reuptake inhibitor might be the most effective time. In this study we aimed to identify molecular biomarkers involved in the serotonergic pathway that could predict the response to sertraline treatment in young children with FXS. METHODS Genotypes were determined for several genes involved in serotonergic pathway in 51 children with FXS, ages 24-72months. Correlations between genotypes and deviations from baseline in primary and secondary outcome measures were modeled using linear regression models. RESULTS A significant association was observed between a BDNF polymorphism and improvements for several clinical measures, including the Clinical Global Impression scale (P=0.008) and the cognitive T score (P=0.017) in those treated with sertraline compared to those in the placebo group. Additionally, polymorphisms in the MAOA, Cytochrome P450 2C19 and 2D6, and in the 5-HTTLPR gene showed a significant correlation with some of the secondary measures included in this study. CONCLUSION This study shows that polymorphisms of genes involved in the serotonergic pathway could play a potential role in predicting response to sertraline treatment in young children with FXS. Larger studies are warranted to confirm these initial findings.
Human Molecular Genetics | 2014
Anna L. Ludwig; Glenda M. Espinal; Dalyir Pretto; Amanda L. Jamal; Gloria Arque; Flora Tassone; Robert F. Berman; Paul J. Hagerman