Damaris Bausch-Fluck
ETH Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Damaris Bausch-Fluck.
Nature Biotechnology | 2009
Bernd Wollscheid; Damaris Bausch-Fluck; Christine Henderson; Robert O'Brien; Miriam Bibel; Ralph Schiess; Ruedi Aebersold; Julian D. Watts
Although the classification of cell types often relies on the identification of cell surface proteins as differentiation markers, flow cytometry requires suitable antibodies and currently permits detection of only up to a dozen differentiation markers in a single measurement. We use multiplexed mass-spectrometric identification of several hundred N-linked glycosylation sites specifically from cell surface–exposed glycoproteins to phenotype cells without antibodies in an unbiased fashion and without a priori knowledge. We apply our cell surface–capturing (CSC) technology, which covalently labels extracellular glycan moieties on live cells, to the detection and relative quantitative comparison of the cell surface N-glycoproteomes of T and B cells, as well as to monitor changes in the abundance of cell surface N-glycoprotein markers during T-cell activation and the controlled differentiation of embryonic stem cells into the neural lineage. A snapshot view of the cell surface N-glycoproteins will enable detection of panels of N-glycoproteins as potential differentiation markers that are currently not accessible by other means.
Blood | 2010
Andreas Hofmann; Bertran Gerrits; Alexander Schmidt; Thomas Bock; Damaris Bausch-Fluck; Rudolf Aebersold; Bernd Wollscheid
Immunophenotyping by flow cytometry or immunohistochemistry is a clinical standard procedure for diagnosis, classification, and monitoring of hematologic malignancies. Antibody-based cell surface phenotyping is commonly limited to cell surface proteins for which specific antibodies are available and the number of parallel measurements is limited. The resulting limited knowledge about cell surface protein markers hampers early clinical diagnosis and subclassification of hematologic malignancies. Here, we describe the mass spectrometry based phenotyping of 2 all-trans retinoic acid treated acute myeloid leukemia model systems at an unprecedented level to a depth of more than 500 membrane proteins, including 137 bona fide cell surface exposed CD proteins. This extensive view of the leukemia surface proteome was achieved by developing and applying new implementations of the Cell Surface Capturing (CSC) technology. Bioinformatic and hierarchical cluster analysis showed that the applied strategy reliably revealed known differentiation-induced abundance changes of cell surface proteins in HL60 and NB4 cells and it also identified cell surface proteins with very little prior information. The extensive and quantitative analysis of the cell surface protein landscape from a systems biology perspective will be most useful in the clinic for the improved subclassification of hematologic malignancies and the identification of new drug targets.
PLOS ONE | 2015
Damaris Bausch-Fluck; Andreas Hofmann; Thomas Bock; Andreas Frei; Ferdinando Cerciello; Andrea Jacobs; Hansjoerg Moest; Ulrich Omasits; Rebekah L. Gundry; Charles Yoon; Ralph Schiess; Alexander Schmidt; Paulina Mirkowska; Anetta Härtlová; Jennifer E. Van Eyk; Jean Pierre Bourquin; Ruedi Aebersold; Kenneth R. Boheler; Peter W. Zandstra; Bernd Wollscheid
Cell surface proteins are major targets of biomedical research due to their utility as cellular markers and their extracellular accessibility for pharmacological intervention. However, information about the cell surface protein repertoire (the surfaceome) of individual cells is only sparsely available. Here, we applied the Cell Surface Capture (CSC) technology to 41 human and 31 mouse cell types to generate a mass-spectrometry derived Cell Surface Protein Atlas (CSPA) providing cellular surfaceome snapshots at high resolution. The CSPA is presented in form of an easy-to-navigate interactive database, a downloadable data matrix and with tools for targeted surfaceome rediscovery (http://wlab.ethz.ch/cspa). The cellular surfaceome snapshots of different cell types, including cancer cells, resulted in a combined dataset of 1492 human and 1296 mouse cell surface glycoproteins, providing experimental evidence for their cell surface expression on different cell types, including 136 G-protein coupled receptors and 75 membrane receptor tyrosine-protein kinases. Integrated analysis of the CSPA reveals that the concerted biological function of individual cell types is mainly guided by quantitative rather than qualitative surfaceome differences. The CSPA will be useful for the evaluation of drug targets, for the improved classification of cell types and for a better understanding of the surfaceome and its concerted biological functions in complex signaling microenvironments.
Stem cell reports | 2014
Kenneth R. Boheler; Subarna Bhattacharya; Erin M. Kropp; Sandra Chuppa; Daniel R. Riordon; Damaris Bausch-Fluck; Paul W. Burridge; Joseph C. Wu; Robert P. Wersto; Godfrey Chi-Fung Chan; Sridhar Rao; Bernd Wollscheid; Rebekah L. Gundry
Summary Detailed knowledge of cell-surface proteins for isolating well-defined populations of human pluripotent stem cells (hPSCs) would significantly enhance their characterization and translational potential. Through a chemoproteomic approach, we developed a cell-surface proteome inventory containing 496 N-linked glycoproteins on human embryonic (hESCs) and induced PSCs (hiPSCs). Against a backdrop of human fibroblasts and 50 other cell types, >100 surface proteins of interest for hPSCs were revealed. The >30 positive and negative markers verified here by orthogonal approaches provide experimental justification for the rational selection of pluripotency and lineage markers, epitopes for cell isolation, and reagents for the characterization of putative hiPSC lines. Comparative differences between the chemoproteomic-defined surfaceome and the transcriptome-predicted surfaceome directly led to the discovery that STF-31, a reported GLUT-1 inhibitor, is toxic to hPSCs and efficient for selective elimination of hPSCs from mixed cultures.
Molecular & Cellular Proteomics | 2013
Ruth Hüttenhain; Silvia Surinova; Reto Ossola; Zhi Sun; David S. Campbell; Ferdinando Cerciello; Ralph Schiess; Damaris Bausch-Fluck; George Rosenberger; Jingchung Chen; Oliver Rinner; Ulrike Kusebauch; Marian Hajduch; Robert L. Moritz; Bernd Wollscheid; Ruedi Aebersold
Protein biomarkers have the potential to transform medicine as they are clinically used to diagnose diseases, stratify patients, and follow disease states. Even though a large number of potential biomarkers have been proposed over the past few years, almost none of them have been implemented so far in the clinic. One of the reasons for this limited success is the lack of technologies to validate proposed biomarker candidates in larger patient cohorts. This limitation could be alleviated by the use of antibody-independent validation methods such as selected reaction monitoring (SRM). Similar to measurements based on affinity reagents, SRM-based targeted mass spectrometry also requires the generation of definitive assays for each targeted analyte. Here, we present a library of SRM assays for 5568 N-glycosites enabling the multiplexed evaluation of clinically relevant N-glycoproteins as biomarker candidates. We demonstrate that this resource can be utilized to select SRM assay sets for cancer-associated N-glycoproteins for their subsequent multiplexed and consistent quantification in 120 human plasma samples. We show that N-glycoproteins spanning 5 orders of magnitude in abundance can be quantified and that previously reported abundance differences in various cancer types can be recapitulated. Together, the established N-glycoprotein SRMAtlas resource facilitates parallel, efficient, consistent, and sensitive evaluation of proposed biomarker candidates in large clinical sample cohorts.
Molecular & Cellular Proteomics | 2012
Rebekah L. Gundry; Daniel R. Riordon; Yelena S. Tarasova; Sandra Chuppa; Subarna Bhattacharya; Ondrej Juhasz; Olena Wiedemeier; Samuel Milanovich; Fallon K. Noto; Irina Tchernyshyov; Kimberly Raginski; Damaris Bausch-Fluck; Hyun-Jin Tae; Shannon Marshall; Stephen A. Duncan; Bernd Wollscheid; Robert P. Wersto; Sridhar Rao; Jennifer E. Van Eyk; Kenneth R. Boheler
Induction of a pluripotent state in somatic cells through nuclear reprogramming has ushered in a new era of regenerative medicine. Heterogeneity and varied differentiation potentials among induced pluripotent stem cell (iPSC) lines are, however, complicating factors that limit their usefulness for disease modeling, drug discovery, and patient therapies. Thus, there is an urgent need to develop nonmutagenic rapid throughput methods capable of distinguishing among putative iPSC lines of variable quality. To address this issue, we have applied a highly specific chemoproteomic targeting strategy for de novo discovery of cell surface N-glycoproteins to increase the knowledge-base of surface exposed proteins and accessible epitopes of pluripotent stem cells. We report the identification of 500 cell surface proteins on four embryonic stem cell and iPSCs lines and demonstrate the biological significance of this resource on mouse fibroblasts containing an oct4-GFP expression cassette that is active in reprogrammed cells. These results together with immunophenotyping, cell sorting, and functional analyses demonstrate that these newly identified surface marker panels are useful for isolating iPSCs from heterogeneous reprogrammed cultures and for isolating functionally distinct stem cell subpopulations.
Clinical Proteomics | 2013
Ferdinando Cerciello; Meena Choi; Annalisa Nicastri; Damaris Bausch-Fluck; Annemarie Ziegler; Olga Vitek; Emanuela Felley-Bosco; Rolf A. Stahel; Ruedi Aebersold; Bernd Wollscheid
BackgroundSerum biomarkers can improve diagnosis and treatment of malignant pleural mesothelioma (MPM). However, the evaluation of potential new serum biomarker candidates is hampered by a lack of assay technologies for their clinical evaluation. Here we followed a hypothesis-driven targeted proteomics strategy for the identification and clinical evaluation of MPM candidate biomarkers in serum of patient cohorts.ResultsBased on the hypothesis that cell surface exposed glycoproteins are prone to be released from tumor-cells to the circulatory system, we screened the surfaceome of model cell lines for potential MPM candidate biomarkers. Selected Reaction Monitoring (SRM) assay technology allowed for the direct evaluation of the newly identified candidates in serum. Our evaluation of 51 candidate biomarkers in the context of a training and an independent validation set revealed a reproducible glycopeptide signature of MPM in serum which complemented the MPM biomarker mesothelin.ConclusionsOur study shows that SRM assay technology enables the direct clinical evaluation of protein-derived candidate biomarker panels for which clinically reliable ELISA’s currently do not exist.
Journal of Proteome Research | 2012
Thomas Bock; Hansjoerg Moest; Ulrich Omasits; Silvia Dolski; Emma Lundberg; Andreas Frei; Andreas Hofmann; Damaris Bausch-Fluck; Andrea Jacobs; Niklaus Krayenbuehl; Mathias Uhlén; Ruedi Aebersold; Karl Frei; Bernd Wollscheid
Glioblastoma is the most common primary brain tumor in adults with low average survival time after diagnosis. In order to improve glioblastoma treatment, new drug-accessible targets need to be identified. Cell surface glycoproteins are prime drug targets due to their accessibility at the surface of cancer cells. To overcome the limited availability of suitable antibodies for cell surface protein detection, we performed a comprehensive mass spectrometric investigation of the glioblastoma surfaceome. Our combined cell surface capturing analysis of primary ex vivo glioblastoma cell lines in combination with established glioblastoma cell lines revealed 633 N-glycoproteins, which vastly extends the known data of surfaceome drug targets at subcellular resolution. We provide direct evidence of common glioblastoma cell surface glycoproteins and an approximate estimate of their abundances, information that could not be derived from genomic and/or transcriptomic glioblastoma studies. Apart from our pharmaceutically valuable repertoire of already and potentially drug-accessible cell surface glycoproteins, we built a mass-spectrometry-based toolbox enabling directed, sensitive, and repetitive glycoprotein measurements for clinical follow-up studies. The included Skyline Glioblastoma SRM assay library provides an elevated starting point for parallel testing of the abundance level of the detected glioblastoma surfaceome members in future drug perturbation experiments.
Lung Cancer | 2012
Annemarie Ziegler; Ferdinando Cerciello; Colette Bigosch; Damaris Bausch-Fluck; Emanuela Felley-Bosco; Reto Ossola; Alex Soltermann; Rolf A. Stahel; Bernd Wollscheid
Identification of new markers for malignant pleural mesothelioma (MPM) is a challenging clinical need. Here, we propose a quantitative proteomics primary screen of the cell surface exposed MPM N-glycoproteins, which provides the basis for the development of new protein-based diagnostic assays. Using the antibody-independent mass-spectrometry based cell surface capturing (CSC) technology, we specifically investigated the N-glycosylated surfaceome of MPM towards the identification of protein-marker candidates discriminatory between MPM and lung adenocarcinoma (ADCA). Relative quantitative CSC analysis of MPM cell line ZL55 in comparison with ADCA cell line Calu-3 revealed a birds eye view of their respective surfaceomes. In a secondary screen of fifteen MPM and six ADCA, we used high throughput low density microarrays (LDAs) to verify specificity and sensitivity of nineteen N-glycoproteins overregulated in the surfaceome of MPM. This proteo-transcriptomic approach revealed thy-1/CD90 (THY1) and teneurin-2 (ODZ2) as protein-marker candidates for the discrimination of MPM from ADCA. Thy-1/CD90 was further validated by immunohistochemistry on frozen tissue sections of MPM and ADCA samples. Together, we present a combined proteomic and transcriptomic approach enabling the relative quantitative identification and pre-clinical selection of new MPM marker candidates.
PLOS ONE | 2013
Lilli Stergiou; Manuel Bauer; Waltraud Mair; Damaris Bausch-Fluck; Nir Drayman; Bernd Wollscheid; Ariella Oppenheim; Lucas Pelkmans
Simian Virus 40 (SV40) is a paradigm pathogen with multivalent binding sites for the sphingolipid GM1, via which it induces its endocytosis for infection. Here we report that SV40 also utilizes cell surface integrins to activate signaling networks required for infection, even in the absence of the previously implicated glycosphingolipids. We identify ILK, PDK1, the RhoGAP GRAF1 and RhoA as core nodes of the signaling network activated upon SV40 engagement of integrins. We show that integrin-mediated signaling through host SV40 engagement induces the de-phosphorylation of Ezrin leading to uncoupling of the plasma membrane and cortical actin. Our results provide functional evidence for a mechanism by which SV40 activates signal transduction in human epithelial cells via integrins in the context of clathrin-independent endocytosis.