Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Damian Fermin is active.

Publication


Featured researches published by Damian Fermin.


Nature Methods | 2013

The CRAPome: a Contaminant Repository for Affinity Purification Mass Spectrometry Data

Dattatreya Mellacheruvu; Zachary Wright; Amber L. Couzens; Jean-Philippe Lambert; Nicole St-Denis; Tuo Li; Yana V. Miteva; Simon Hauri; Mihaela E. Sardiu; Teck Yew Low; Vincentius A. Halim; Richard D. Bagshaw; Nina C. Hubner; Abdallah Al-Hakim; Annie Bouchard; Denis Faubert; Damian Fermin; Wade H. Dunham; Marilyn Goudreault; Zhen Yuan Lin; Beatriz Gonzalez Badillo; Tony Pawson; Daniel Durocher; Benoit Coulombe; Ruedi Aebersold; Giulio Superti-Furga; Jacques Colinge; Albert J. R. Heck; Hyungwon Choi; Matthias Gstaiger

Affinity purification coupled with mass spectrometry (AP-MS) is a widely used approach for the identification of protein-protein interactions. However, for any given protein of interest, determining which of the identified polypeptides represent bona fide interactors versus those that are background contaminants (for example, proteins that interact with the solid-phase support, affinity reagent or epitope tag) is a challenging task. The standard approach is to identify nonspecific interactions using one or more negative-control purifications, but many small-scale AP-MS studies do not capture a complete, accurate background protein set when available controls are limited. Fortunately, negative controls are largely bait independent. Hence, aggregating negative controls from multiple AP-MS studies can increase coverage and improve the characterization of background associated with a given experimental protocol. Here we present the contaminant repository for affinity purification (the CRAPome) and describe its use for scoring protein-protein interactions. The repository (currently available for Homo sapiens and Saccharomyces cerevisiae) and computational tools are freely accessible at http://www.crapome.org/.


Nature Biotechnology | 2006

Challenges in deriving high-confidence protein identifications from data gathered by a HUPO plasma proteome collaborative study

David J. States; Gilbert S. Omenn; Thomas W. Blackwell; Damian Fermin; Jimmy K. Eng; David W. Speicher; Samir M. Hanash

The Human Proteome Organization (HUPO) recently completed the first large-scale collaborative study to characterize the human serum and plasma proteomes. The study was carried out in different locations and used diverse methods and instruments to compare and integrate tandem mass spectrometry (MS/MS) data on aliquots of pooled serum and plasma from healthy subjects. Liquid chromatography (LC)-MS/MS data sets from 18 laboratories were matched to the International Protein Index database, and an initial integration exercise resulted in 9,504 proteins identified with one or more peptides, and 3,020 proteins identified with two or more peptides. This article uses a rigorous statistical approach to take into account the length of coding regions in genes, and multiple hypothesis-testing techniques. On this basis, we now present a reduced set of 889 proteins identified with a confidence level of at least 95%. We also discuss the importance of such an integrated analysis in providing an accurate representation of a proteome as well as the value such data sets contain for the high-confidence identification of protein matches to novel exons, some of which may be localized in alternatively spliced forms of known plasma proteins and some in previously nonannotated gene sequences.


Molecular & Cellular Proteomics | 2008

Significance Analysis of Spectral Count Data in Label-free Shotgun Proteomics

Hyungwon Choi; Damian Fermin; Alexey I. Nesvizhskii

Spectral counting has become a commonly used approach for measuring protein abundance in label-free shotgun proteomics. At the same time, the development of data analysis methods has lagged behind. Currently most studies utilizing spectral counts rely on simple data transforms and posthoc corrections of conventional signal-to-noise ratio statistics. However, these adjustments can neither handle the bias toward high abundance proteins nor deal with the drawbacks due to the limited number of replicates. We present a novel statistical framework (QSpec) for the significance analysis of differential expression with extensions to a variety of experimental design factors and adjustments for protein properties. Using synthetic and real experimental data sets, we show that the proposed method outperforms conventional statistical methods that search for differential expression for individual proteins. We illustrate the flexibility of the model by analyzing a data set with a complicated experimental design involving cellular localization and time course.


Aging Cell | 2009

Calorie restriction alters mitochondrial protein acetylation.

Bjoern Schwer; Mark Eckersdorff; Yu Li; Damian Fermin; Martin V. Kurtev; Cosmas Giallourakis; Michael J. Comb; Frederick W. Alt; David B. Lombard

Calorie restriction (CR) increases lifespan in organisms ranging from budding yeast through mammals. Mitochondrial adaptation represents a key component of the response to CR. Molecular mechanisms underlying this adaptation are largely unknown. Here we show that lysine acetylation of mitochondrial proteins is altered during CR in a tissue‐specific fashion. Via large‐scale mass spectrometry screening, we identify 72 candidate proteins involved in a variety of metabolic pathways with altered acetylation during CR. Mitochondrial acetylation changes may play an important role in the pro‐longevity CR response.


Genome Biology | 2006

Novel gene and gene model detection using a whole genome open reading frame analysis in proteomics

Damian Fermin; Baxter B. Allen; Thomas W. Blackwell; Rajasree Menon; Marcin Adamski; Yin Xu; Peter J. Ulintz; Gilbert S. Omenn; David J. States

BackgroundDefining the location of genes and the precise nature of gene products remains a fundamental challenge in genome annotation. Interrogating tandem mass spectrometry data using genomic sequence provides an unbiased method to identify novel translation products. A six-frame translation of the entire human genome was used as the query database to search for novel blood proteins in the data from the Human Proteome Organization Plasma Proteome Project. Because this target database is orders of magnitude larger than the databases traditionally employed in tandem mass spectra analysis, careful attention to significance testing is required. Confidence of identification is assessed using our previously described Poisson statistic, which estimates the significance of multi-peptide identifications incorporating the length of the matching sequence, number of spectra searched and size of the target sequence database.ResultsApplying a false discovery rate threshold of 0.05, we identified 282 significant open reading frames, each containing two or more peptide matches. There were 627 novel peptides associated with these open reading frames that mapped to a unique genomic coordinate placed within the start/stop points of previously annotated genes. These peptides matched 1,110 distinct tandem MS spectra. Peptides fell into four categories based upon where their genomic coordinates placed them relative to annotated exons within the parent gene.ConclusionThis work provides evidence for novel alternative splice variants in many previously annotated genes. These findings suggest that annotation of the genome is not yet complete and that proteomics has the potential to further add to our understanding of gene structures.


Journal of Proteome Research | 2012

Comparative analysis of different label-free mass spectrometry based protein abundance estimates and their correlation with RNA-Seq gene expression data

Kang Ning; Damian Fermin; Alexey I. Nesvizhskii

An increasing number of studies involve integrative analysis of gene and protein expression data taking advantage of new technologies such as next-generation transcriptome sequencing (RNA-Seq) and highly sensitive mass spectrometry (MS) instrumentation. Thus, it becomes interesting to revisit the correlative analysis of gene and protein expression data using more recently generated data sets. Furthermore, within the proteomics community there is a substantial interest in comparing the performance of different label-free quantitative proteomic strategies. Gene expression data can be used as an indirect benchmark for such protein-level comparisons. In this work we use publicly available mouse data to perform a joint analysis of genomic and proteomic data obtained on the same organism. First, we perform a comparative analysis of different label-free protein quantification methods (intensity based and spectral count based and using various associated data normalization steps) using several software tools on the proteomic side. Similarly, we perform correlative analysis of gene expression data derived using microarray and RNA-Seq methods on the genomic side. We also investigate the correlation between gene and protein expression data, and various factors affecting the accuracy of quantitation at both levels. It is observed that spectral count based protein abundance metrics, which are easy to extract from any published data, are comparable to intensity based measures with respect to correlation with gene expression data. The results of this work should be useful for designing robust computational pipelines for extraction and joint analysis of gene and protein expression data in the context of integrative studies.


Molecular & Cellular Proteomics | 2010

Quantitative Proteomic Profiling of Prostate Cancer Reveals a Role for miR-128 in Prostate Cancer

Amjad P. Khan; Laila M. Poisson; Vadiraja B. Bhat; Damian Fermin; Rong Zhao; Shanker Kalyana-Sundaram; George Michailidis; Alexey I. Nesvizhskii; Gilbert S. Omenn; Arul M. Chinnaiyan; Arun Sreekumar

Multiple, complex molecular events characterize cancer development and progression. Deciphering the molecular networks that distinguish organ-confined disease from metastatic disease may lead to the identification of biomarkers of cancer invasion and disease aggressiveness. Although alterations in gene expression have been extensively quantified during neoplastic progression, complementary analyses of proteomic changes have been limited. Here we interrogate the proteomic alterations in a cohort of 15 prostate-derived tissues that included five each from adjacent benign prostate, clinically localized prostate cancer, and metastatic disease from distant sites. The experimental strategy couples isobaric tags for relative and absolute quantitation with multidimensional liquid phase peptide fractionation followed by tandem mass spectrometry. Over 1000 proteins were quantified across the specimens and delineated into clinically localized and metastatic prostate cancer-specific signatures. Included in these class-specific profiles were both proteins that were known to be dysregulated during prostate cancer progression and new ones defined by this study. Enrichment analysis of the prostate cancer-specific proteomic signature, to gain insight into the functional consequences of these alterations, revealed involvement of miR-128-a/b regulation during prostate cancer progression. This finding was validated using real time PCR analysis for microRNA transcript levels in an independent set of 15 clinical specimens. miR-128 levels were elevated in benign prostate epithelial cell lines compared with invasive prostate cancer cells. Knockdown of miR-128 induced invasion in benign prostate epithelial cells, whereas its overexpression attenuated invasion in prostate cancer cells. Taken together, our profiles of the proteomic alterations of prostate cancer progression revealed miR-128 as a potentially important negative regulator of prostate cancer cell invasion.


Cancer Research | 2009

Identification of Novel Alternative Splice Isoforms of Circulating Proteins in a Mouse Model of Human Pancreatic Cancer

Rajasree Menon; Qing Zhang; Yan Zhang; Damian Fermin; Nabeel Bardeesy; Ronald A. DePinho; Chunxia Lu; Samir M. Hanash; Gilbert S. Omenn; David J. States

To assess the potential of tumor-associated, alternatively spliced gene products as a source of biomarkers in biological fluids, we have analyzed a large data set of mass spectra derived from the plasma proteome of a mouse model of human pancreatic ductal adenocarcinoma. MS/MS spectra were interrogated for novel splice isoforms using a nonredundant database containing an exhaustive three-frame translation of Ensembl transcripts and gene models from ECgene. This integrated analysis identified 420 distinct splice isoforms, of which 92 did not match any previously annotated mouse protein sequence. We chose seven of those novel variants for validation by reverse transcription-PCR. The results were concordant with the proteomic analysis. All seven novel peptides were successfully amplified in pancreas specimens from both wild-type and mutant mice. Isotopic labeling of cysteine-containing peptides from tumor-bearing mice and wild-type controls enabled relative quantification of the proteins. Differential expression between tumor-bearing and control mice was notable for peptides from novel variants of muscle pyruvate kinase, malate dehydrogenase 1, glyceraldehyde-3-phosphate dehydrogenase, proteoglycan 4, minichromosome maintenance, complex component 9, high mobility group box 2, and hepatocyte growth factor activator. Our results show that, in a mouse model for human pancreatic cancer, novel and differentially expressed alternative splice isoforms are detectable in plasma and may be a source of candidate biomarkers.


Proteomics | 2011

Abacus: A computational tool for extracting and pre-processing spectral count data for label-free quantitative proteomic analysis

Damian Fermin; Venkatesha Basrur; Anastasia K. Yocum; Alexey I. Nesvizhskii

We describe Abacus, a computational tool for extracting spectral counts from MS/MS data sets. The program aggregates data from multiple experiments, adjusts spectral counts to accurately account for peptides shared across multiple proteins, and performs common normalization steps. It can also output the spectral count data at the gene level, thus simplifying the integration and comparison between gene and protein expression data. Abacus is compatible with the widely used Trans‐Proteomic Pipeline suite of tools and comes with a graphical user interface making it easy to interact with the program. The main aim of Abacus is to streamline the analysis of spectral count data by providing an automated, easy to use solution for extracting this information from proteomic data sets for subsequent, more sophisticated statistical analysis.


Proteomics | 2010

Computational analysis of unassigned high-quality MS/MS spectra in proteomic data sets.

Kang Ning; Damian Fermin; Alexey I. Nesvizhskii

In a typical shotgun proteomics experiment, a significant number of high‐quality MS/MS spectra remain “unassigned.” The main focus of this work is to improve our understanding of various sources of unassigned high‐quality spectra. To achieve this, we designed an iterative computational approach for more efficient interrogation of MS/MS data. The method involves multiple stages of database searching with different search parameters, spectral library searching, blind searching for modified peptides, and genomic database searching. The method is applied to a large publicly available shotgun proteomic data set.

Collaboration


Dive into the Damian Fermin's collaboration.

Top Co-Authors

Avatar

Megan S. Lim

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyungwon Choi

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carmella van de Ven

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge