Damian Graczyk
Polish Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Damian Graczyk.
Molecular and Cellular Biology | 2007
Małgorzata Cieśla; Joanna Towpik; Damian Graczyk; Danuta Oficjalska-Pham; Olivier Harismendy; Audrey Suleau; Karol Balicki; Christine Conesa; Olivier Lefebvre; Magdalena Boguta
ABSTRACT RNA polymerase III (Pol III) produces essential components of the biosynthetic machinery, and therefore its activity is tightly coupled with cell growth and metabolism. In the yeast Saccharomyces cerevisiae, Maf1 is the only known global and direct Pol III transcription repressor which mediates numerous stress signals. Here we demonstrate that transcription regulation by Maf1 is not limited to stress but is important for the switch between fermentation and respiration. Under respiratory conditions, Maf1 is activated by dephosphorylation and imported into the nucleus. The transition from a nonfermentable carbon source to that of glucose induces Maf1 phosphorylation and its relocation to the cytoplasm. The absence of Maf1-mediated control of tRNA synthesis impairs cell viability in nonfermentable carbon sources. The respiratory phenotype of maf1-Δ allowed genetic suppression studies to dissect the mechanism of Maf1 action on the Pol III transcription apparatus. Moreover, in cells grown in a nonfermentable carbon source, Maf1 regulates the levels of different tRNAs to various extents. The differences in regulation may contribute to the physiological role of Maf1.
Journal of Biological Chemistry | 2008
Joanna Towpik; Damian Graczyk; Anna Gajda; Olivier Lefebvre; Magdalena Boguta
Maf1 is the global repressor of RNA polymerase III (Pol III) in yeast Saccharomyces cerevisiae. Transcription regulation by Maf1 is important under stress conditions and during the switch between fermentation and respiration. Under repressive conditions on nonfermentable carbon sources, Maf1 is dephosphorylated and located predominantly in the nucleus. When cells were shifted to glucose medium, Maf1 became phosphorylated and concomitantly relocated to the cytoplasm. This relocation was dependent on Msn5, a carrier responsible for export of several other phosphoproteins out of the nucleus. Using coimmunoprecipitation, Maf1 was found to interact with Msn5. When msn5-Δ cells were transferred to glucose, Maf1 remained in the nucleus. Remarkably, despite constitutive presence in the nucleus, Maf1 was dephosphorylated and phosphorylated normally in the msn5-Δ mutant, and Pol III was under proper regulation. That phosphorylation of Maf1 and Pol III derepression are tightly linked was shown by studying tRNA transcription in Maf1 mutants with an altered pattern of phosphorylation. In summary, we conclude that phosphorylation of Maf1 inside the nucleus acts both directly by decreasing of Maf1-mediated repression of Pol III and indirectly by stimulation of Msn5 binding and export of nuclear Maf1 to the cytoplasm.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Damian Graczyk; Janusz Dębski; Grażyna Muszyńska; Maria Bretner; Olivier Lefebvre; Magdalena Boguta
Maf1 protein is a global negative regulator of RNA polymerase (Pol) III transcription conserved from yeast to man. We report that phosphorylation of Maf1 by casein kinase II (CK2), a highly evolutionarily conserved eukaryotic kinase, is required for efficient Pol III transcription. Both recombinant human and yeast CK2 were able to phosphorylate purified human or yeast Maf1, indicating that Maf1 can be a direct substrate of CK2. Upon transfer of Saccharomyces cerevisiae from repressive to favorable growth conditions, CK2 activity is required for the release of Maf1 from Pol III bound to a tRNA gene and for subsequent activation of tRNA transcription. In a yeast strain lacking Maf1, CK2 inhibition showed no effect on tRNA synthesis, confirming that CK2 activates Pol III via Maf1. Additionally, CK2 was found to associate with tRNA genes, and this association is enhanced in absence of Maf1, especially under repressive conditions. These results corroborate the previously reported TFIIIB–CK2 interaction and indicate an important role of CK2-mediated Maf1 phosphorylation in triggering Pol III activation.
Journal of Biological Chemistry | 2011
Iwona Karkusiewicz; Tomasz W. Turowski; Damian Graczyk; Joanna Towpik; Nripesh Dhungel; Anita K. Hopper; Magdalena Boguta
Maf1 is negative regulator of RNA polymerase III in yeast. We observed high levels of both primary transcript and end-matured, intron-containing pre-tRNAs in the maf1Δ strain. This pre-tRNA accumulation could be overcome by transcription inhibition, arguing against a direct role of Maf1 in tRNA maturation and suggesting saturation of processing machinery by the increased amounts of primary transcripts. Saturation of the tRNA exportin, Los1, is one reason why end-matured intron-containing pre-tRNAs accumulate in maf1Δ cells. However, it is likely possible that other components of the processing pathway are also limiting when tRNA transcription is increased. According to our model, Maf1-mediated transcription control and nuclear export by Los1 are two major stages of tRNA biosynthesis that are regulated by environmental conditions in a coordinated manner.
Trends in Biochemical Sciences | 2011
Magdalena Boguta; Damian Graczyk
The synthesis of tRNA by yeast RNA polymerase III (Pol III) is regulated in response to changing environmental conditions. This control is mediated by Maf1, the global negative regulator of Pol III transcription conserved from yeast to humans. Details regarding the molecular basis of Pol III repression by Maf1 are now emerging from recently reported structural and biochemical data on Pol III and Maf1. Efficient Pol III transcription, following the shift of cells from a non-fermentable carbon source to glucose, requires phosphorylation of Maf1. One of the newly identified Maf1 kinases is the chromatin-bound casein kinase II (CK2). Current studies have allowed us to propose an innovative mechanism of Pol III regulation. We suggest that CK2-mediated phosphorylation of Maf1, occurring directly on tDNA chromatin, controls Pol III recycling.
Oncogene | 2015
Jaclyn S. Long; Pepijn M. Schoonen; Damian Graczyk; Jim O'Prey; Kevin M. Ryan
Tumour cells often acquire the ability to escape cell death, a key event leading to the development of cancer. In almost half of all human cancers, the capability to induce cell death is reduced by the mutation and inactivation of p53, a tumour suppressor protein that is a central regulator of apoptosis. As a result, there is a crucial need to identify different cell death pathways that could be targeted in malignancies lacking p53. p73, the closely related p53 family member, can regulate many p53 target genes and therefore some of the same cellular responses as p53. Unlike p53, however, p73 is seldom mutated in cancer, making it an attractive, alternative death effector to target. We report here the ability of p73 to upregulate the expression of the A2B receptor, a recently characterized p53 target that effectively promotes cell death in response to extracellular adenosine—a metabolite that accumulates during various forms of cellular stress. Importantly, we show that p73-dependent stimulation of A2B signalling markedly enhances apoptosis in cancer cells that are devoid of p53. This mode of death is caspase- and puma-dependent, and can be prevented by the overexpression of anti-apoptotic Bcl-XL. Moreover, treatment of p53-null cancer cells with the chemotherapeutic drug adriamycin (doxorubicin) induces A2B in a p73-dependent manner and, in combination with an A2B agonist, substantially enhances apoptotic death. We therefore propose an alternate and distinct p53-independent pathway to stimulate programmed cell death involving p73-mediated engagement of adenosine signalling.
Gene | 2013
Ewa Morawiec; Dominika Wichtowska; Damian Graczyk; Christine Conesa; Olivier Lefebvre; Magdalena Boguta
Maf1 is a negative regulator of RNA polymerase III (Pol III) in yeast. Maf1-depleted cells manifest elevated tRNA transcription and inability to grow on non-fermentable carbon source, such as glycerol. Using genomic microarray approach, we examined the effect of Maf1 deletion on expression of Pol II-transcribed genes in yeast grown in medium containing glycerol. We found that transcription of FBP1 and PCK1, two major genes controlling gluconeogenesis, was decreased in maf1Δ cells. FBP1 is located on chromosome XII in close proximity to a tRNA-Lys gene. Accordingly we hypothesized that decreased FBP1 mRNA level could be due to the effect of Maf1 on tgm silencing (tRNA gene mediated silencing). Two approaches were used to verify this hypothesis. First, we inactivated tRNA-Lys gene on chromosome XII by inserting a deletion cassette in a control wild type strain and in maf1Δ mutant. Second, we introduced a point mutation in the promoter of the tRNA-Lys gene cloned with the adjacent FBP1 in a plasmid and expressed in fbp1Δ or fbp1Δ maf1Δ cells. The levels of FBP1 mRNA were determined by RT-qPCR in each strain. Although the inactivation of the chromosomal tRNA-Lys gene increased expression of the neighboring FBP1, the mutation preventing transcription of the plasmid-born tRNA-Lys gene had no significant effect on FBP1 transcription. Taken together, those results do not support the concept of tgm silencing of FBP1. Other possible mechanisms are discussed.
Molecular and Cellular Biology | 2015
Damian Graczyk; Robert J. White; Kevin M. Ryan
ABSTRACT Inflammation in the tumor microenvironment has many tumor-promoting effects. In particular, tumor-associated macrophages (TAMs) produce many cytokines which can support tumor growth by promoting survival of malignant cells, angiogenesis, and metastasis. Enhanced cytokine production by TAMs is tightly coupled with protein synthesis. In turn, translation of proteins depends on tRNAs, short abundant transcripts that are made by RNA polymerase III (Pol III). Here, we connect these facts by showing that stimulation of mouse macrophages with lipopolysaccharides (LPS) from the bacterial cell wall causes transcriptional upregulation of tRNA genes. The transcription factor NF-κB is a key transcription factor mediating inflammatory signals, and we report that LPS treatment causes an increased association of the NF-κB subunit p65 with tRNA genes. In addition, we show that p65 can directly associate with the Pol III transcription factor TFIIIB and that overexpression of p65 induces Pol III-dependent transcription. As a consequence of these effects, we show that inhibition of Pol III activity in macrophages restrains cytokine secretion and suppresses phagocytosis, two key functional characteristics of these cells. These findings therefore identify a radical new function for Pol III in the regulation of macrophage function which may be important for the immune responses associated with both normal and malignant cells.
Biochimica et Biophysica Acta | 2009
Jacek Sikora; Joanna Towpik; Damian Graczyk; Michał Kistowski; Tymon Rubel; Jarosław Poznański; James I. Langridge; Chris Hughes; Michal Dadlez; Magdalena Boguta
We report proteomic analyses that establish the effect of cytoplasmic prion [PSI(+)] on the protein complement of yeast mitochondria. A set of 44 yeast mitochondrial proteins whose levels were affected by [PSI(+)] was identified by two methods of gel-free and label-free differential proteomics. From this set we focused on prohibitins, Phb1 and Phb2, and the mitochondrially synthesized Cox2 subunit of cytochrome oxidase. By immunoblotting we confirmed the decreased level of Cox2 and reduced mitochondrial localization of the prohibitins in [PSI(+)] cells, which both became partially restored by [PSI(+)] curing. The presence of the [PSI(+)] prion also caused premature fragmentation of mitochondria, a phenomenon linked to prohibitin depletion in mammalian cells. By fractionation of cellular extracts we demonstrated a [PSI(+)]-dependent increase of the proportion of prohibitins in the high molecular weight fraction of aggregated proteins. We propose that the presence of the yeast prion causes newly synthesized prohibitins to aggregate in the cytosol, and therefore reduces their levels in mitochondria, which in turn reduces the stability of Cox2 and possibly of other proteins, not investigated here in detail.
Biochimica et Biophysica Acta | 2018
Damian Graczyk; Małgorzata Cieśla; Magdalena Boguta
The synthesis of transfer RNA (tRNA) is directed by RNA polymerase III (Pol III) specialized in high-level transcription of short DNA templates. Pol III recruitment to tRNA genes is controlled by two general initiation factors, TFIIIB and TFIIIC. They are multi-protein complexes regulated at the level of expression of individual subunits, as well as through phosphorylation and interaction with partner proteins. Here, we describe particular aspects of TFIIIB and TFIIIC control in yeast and human cells. Under stress conditions, tRNA synthesis is negatively regulated by the MAF1 protein, which interacts directly with Pol III. Sequence and function of MAF1 are conserved among eukaryotic organisms from yeast to humans. MAF1 is a phosphoprotein which mediates diverse regulatory signals to Pol III. Interestingly, there is a subset of housekeeping tRNA genes, both in the yeast and human genome, which are less sensitive to MAF1-dependent repression. The possible mechanisms responsible for this differential regulation of tRNA synthesis by MAF1 are discussed.