Damian Markham
Télécom ParisTech
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Damian Markham.
Physical Review A | 2008
Damian Markham; Barry C. Sanders
We consider three broad classes of quantum secret sharing with and without eavesdropping and show how a graph state formalism unifies otherwise disparate quantum secret sharing models. In addition to the elegant unification provided by graph states, our approach provides a generalization of threshold classical secret sharing via insecure quantum channels beyond the current requirement of 100% collaboration by players to just a simple majority in the case of five players. Another innovation here is the introduction of embedded protocols within a larger graph state that serves as a one-way quantum-information processing system.
Physical Review Letters | 2006
Masahito Hayashi; Damian Markham; Mio Murao; Masaki Owari; S. Virmani
We show that entanglement guarantees difficulty in the discrimination of orthogonal multipartite states locally. The number of pure states that can be discriminated by local operations and classical communication is bounded by the total dimension over the average entanglement. A similar, general condition is also shown for pure and mixed states. These results offer a rare operational interpretation for three abstractly defined distancelike measures of multipartite entanglement.
New Journal of Physics | 2010
Martin Aulbach; Damian Markham; Mio Murao
The geometric measure of entanglement is investigated for permutation symmetric pure states of multipartite qubit systems, in particular the question of maximum entanglement. This is done with the help of the Majorana representation, which maps an n qubit symmetric state to n points on the unit sphere. It is shown how symmetries of the point distribution can be exploited to simplify the calculation of entanglement and also help find the maximally entangled symmetric state. Using a combination of analytical and numerical results, the most entangled symmetric states for up to 12 qubits are explored and discussed. The optimization problem on the sphere presented here is then compared with two classical optimization problems on the S2 sphere, namely Toths problem and Thomsons problem, and it is observed that, in general, they are different problems.
Physical Review A | 2008
Damian Markham; Jarosław Adam Miszczak; Zbigniew Puchała; Karol Życzkowski
We analyze the problem of finding sets of quantum states that can be deterministically discriminated. From a geometric point of view, this problem is equivalent to that of embedding a simplex of points whose distances are maximal with respect to the Bures distance or trace distance. We derive upper and lower bounds for the trace distance and for the fidelity between two quantum states, which imply bounds for the Bures distance between the unitary orbits of both states. We thus show that, when analyzing minimal and maximal distances between states of fixed spectra, it is sufficient to consider diagonal states only. Hence when optimal discrimination is considered, given freedom up to unitary orbits, it is sufficient to consider diagonal states. This is illustrated geometrically in terms of Weyl chambers.
DCM | 2009
Elham Kashefi; Damian Markham; Mehdi Mhalla; Simon Perdrix
The entangled graph states have emerged as an elegant and powerful quantum resource, indeed almost all multiparty protocols can be written in terms of graph states including measurement based quantum computation (MBQC), error correction and secret sharing amongst others. In addition they are at the forefront in terms of implementations. As such they represent an excellent opportunity to move towards integrated protocols involving many of these elements. In this paper we look at expressing and extending graph state secret sharing and MBQC in a common framework and graphical language related to flow. We do so with two main contributions. First we express in entirely graphical terms which set of players can access which information in graph state secret sharing protocols. These succinct graphical descriptions of access allow us to take known results from graph theory to make statements on the generalisation of the previous schemes to present new secret sharing protocols. Second, we give a set of necessary conditions as to when a graph with flow, i.e. capable of performing a class of unitary operations, can be extended to include vertices which can be ignored, pointless measurements, and hence considered as unauthorised players in terms of secret sharing, or error qubits in terms of fault tolerance. This offers a way to extend existing MBQC patterns to secret sharing protocols. Our characterisation of pointless measurements is believed also to be a useful tool for further integrated measurement based schemes, for example in constructing fault tolerant MBQC schemes.
Physical Review A | 2011
Damian Markham
We investigate the relationship between multipartite entanglement and symmetry, focusing on permutation symmetric states. We give a highly intuitive geometric interpretation to entanglement via the Majorana representation, where these states correspond to points on a unit sphere. We use this to show how various entanglement properties are determined by the symmetry properties of the states. The geometric measure of entanglement is thus phrased entirely as a geometric optimization and a condition for the equivalence of entanglement measures written in terms of point symmetries. Finally, we see that different symmetries of the states correspond to different types of entanglement with respect to interconvertibility under stochastic local operations and classical communication.
EPL | 2008
Damian Markham; Janet Anders; Vlatko Vedral; Mio Murao; Akimasa Miyake
We present a general sufficiency condition for the presence of multipartite entanglement in thermal states stemming from the ground-state entanglement. The condition is written in terms of the ground-state entanglement and the partition function and it gives transition temperatures below which entanglement is guaranteed to survive. It is flexible and can be easily adapted to consider entanglement for different splittings, as well as be weakened to allow easier calculations by approximations. Examples where the condition is calculated are given. These examples allow us to characterize a minimum gapping behavior for the survival of entanglement in the thermodynamic limit. Further, the same technique can be used to find noise thresholds in the generation of useful resource states for one-way quantum computing.
Physical Review A | 2013
Anne Marin; Damian Markham
We present a general scheme for sharing quantum secrets, and an extension to sharing classical secrets, which contain all known quantum secret sharing schemes. In this framework we show the equivalence of existence of both schemes, that is, the existence of a scheme sharing a quantum secret implies the extended classical secret sharing scheme works, and vice versa. As a consequence of this we find new schemes sharing classical secrets for arbitrary access structures. We then clarify the relationship to quantum error correction and observe several restrictions thereby imposed, which for example indicates that for pure state threshold schemes the share size
conference on theory of quantum computation communication and cryptography | 2010
Martin Aulbach; Damian Markham; Mio Murao
q
Foundations of Physics | 2008
Janet Anders; Michal Hajdušek; Damian Markham; Vlatko Vedral
must scale with the number of players