Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Damian Wojcieszak is active.

Publication


Featured researches published by Damian Wojcieszak.


Opto-electronics Review | 2013

TiO2/SiO2 multilayer as an antireflective and protective coating deposited by microwave assisted magnetron sputtering

Michal Mazur; Damian Wojcieszak; Jaroslaw Domaradzki; Danuta Kaczmarek; Shigeng Song; Frank Placido

In this paper designing, preparation and characterization of multifunctional coatings based on TiO2/SiO2 has been described. TiO2 was used as a high index material, whereas SiO2 was used as a low index material. Multilayers were deposited on microscope slide substrates by microwave assisted reactive magnetron sputtering process. Multilayer design was optimized for residual reflection of about 3% in visible spectrum (450–800 nm). As a top layer, TiO2 with a fixed thickness of 10 nm as a protective film was deposited. Based on transmittance and reflectance spectra, refractive indexes of TiO2 and SiO2 single layers were calculated. Ultra high vacuum atomic force microscope was used to characterize the surface properties of TiO2/SiO2 multilayer. Surface morphology revealed densely packed structure with grains of about 30 nm in size. Prepared samples were also investigated by nanoindentation to evaluate their protective performance against external hazards. Therefore, the hardness of the thin films was measured and it was equal to 9.34 GPa. Additionally, contact angle of prepared coatings has been measured to assess the wetting properties of the multilayer surface.


Journal of Nano Research | 2012

Hardness of Nanocrystalline TiO2 Thin Films

Danuta Kaczmarek; Jaroslaw Domaradzki; Damian Wojcieszak; Eugeniusz Prociow; Michal Mazur; Frank Placido; Steffen Lapp

In this work results of hardness investigations of nanocrystalline TiO2 thin films are presented. Thin films were prepared by low pressure hot target reactive sputtering (LPHTRS) and high energy reactive magnetron sputtering (HERMS). In both processes a metallic Ti target was sputtered under low pressure of oxygen working gas. After deposition by LPHTRS TiO2 thin films with anatase structure were obtained and after additional post-process annealing at 1070 K, these films recrystallized into the rutile structure. Annealing also resulted in an increase of average crystallite size from 33 nm (for anatase) to 74 nm (for rutile). The HERMS process is a modification of the LPHTRS process with the addition of an increased amplitude of unipolar voltage pulses, powering the magnetron. This effectively increases the total energy of the depositing particles at the substrate and allows dense, nanocrystalline (8.7 nm crystallites in size) TiO2 thin film with the rutile structure to be formed directly. The hardness of the films was determined by nanoindentation. The results showed that the nanocrystalline TiO2-rutile thin film as-deposited using HERMS had high hardness (14.3 GPa), while the TiO2-anatase films as-deposited by LPHTRS, were 4-times lower (3.5 GPa). For LPHTRS films recrystallized by additional annealing, the change in thin film structure from anatase to rutile resulted in an increase of film hardness from 3.5 GPa to only 7.9 GPa. The HERMS process can therefore produce the TiO2 rutile structure directly, with hardness that is 2 times greater than rutile films produced by LPHTRS with additional annealing step.


Materials Science and Engineering: C | 2015

Determination of structural, mechanical and corrosion properties of Nb2O5 and (NbyCu1 − y)Ox thin films deposited on Ti6Al4V alloy substrates for dental implant applications

Michal Mazur; M. Kalisz; Damian Wojcieszak; M. Grobelny; P. Mazur; Danuta Kaczmarek; Jaroslaw Domaradzki

In this paper comparative studies on the structural, mechanical and corrosion properties of Nb2O5/Ti and (NbyCu1-y)Ox/Ti alloy systems have been investigated. Pure layers of niobia and niobia with a copper addition were deposited on a Ti6Al4V titanium alloy surface using the magnetron sputtering method. The physicochemical properties of the prepared thin films were examined with the aid of XRD, XPS SEM and AFM measurements. The mechanical properties (i.e., nanohardness, Youngs modulus and abrasion resistance) were performed using nanoindentation and a steel wool test. The corrosion properties of the coatings were determined by analysis of the voltammetric curves. The deposited coatings were crack free, exhibited good adherence to the substrate, no discontinuity of the thin film was observed and the surface morphology was homogeneous. The hardness of pure niobium pentoxide was ca. 8.64GPa. The obtained results showed that the addition of copper into pure niobia resulted in the preparation of a layer with a lower hardness of ca. 7.79 GPa (for niobia with 17 at.% Cu) and 7.75 GPa (for niobia with 25 at.% Cu). The corrosion properties of the tested thin films deposited on the surface of titanium alloy depended on the composition of the thin layer. The addition of copper (i.e. a noble metal) to Nb2O5 film increased the corrosion resistance followed by a significant decrease in the value of corrosion currents and, in case of the highest Cu content, the shift of corrosion potential towards the noble direction. The best corrosion properties were obtained from a sample of Ti6Al4V coated with (Nb0.75Cu0.25)Ox thin film. It seems that the tested materials could be used in the future as protection coatings for Ti alloys in biomedical applications such as implants.


Materials Science and Engineering: C | 2015

Influence of Cu–Ti thin film surface properties on antimicrobial activity and viability of living cells

Damian Wojcieszak; Danuta Kaczmarek; Aleksandra Antosiak; Michal Mazur; Zbigniew Rybak; Agnieszka Rusak; Małgorzata Osękowska; Agata Poniedziałek; Andrzej Gamian; Bogumila Szponar

The paper describes properties of thin-film coatings based on copper and titanium. Thin films were prepared by co-sputtering of Cu and Ti targets in argon plasma. Deposited coatings consist of 90at.% of Cu and 10at.% of Ti. Characterization of the film was made on the basis of investigations of microstructure and physicochemical properties of the surface. Methods such as scanning electron microscopy, x-ray microanalysis, x-ray diffraction, x-ray photoelectron spectroscopy, atomic force microscopy, optical profilometry and wettability measurements were used to assess the properties of deposited thin films. An impact of Cu-Ti coating on the growth of selected bacteria and viability of the living cells (line L929, NCTC clone 929) was described in relation to the structure, surface state and wettability of the film. It was found that as-deposited films were amorphous. However, in such surroundings the nanocrystalline grains of 10-15nm and 25-35nm size were present. High surface active area with a roughness of 8.9nm, had an effect on receiving relatively high water contact angle value (74.1°). Such wettability may promote cell adhesion and result in an increase of the probability of copper ion transfer from the film surface into the cell. Thin films revealed bactericidal and fungicidal effects even in short term-contact. High activity of prepared films was directly related to high amount (ca. 51 %) of copper ions at 1+ state as x-ray photoelectron spectroscopy results have shown.


Materials Science-poland | 2015

Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process

Damian Wojcieszak; Michal Mazur; Joanna Indyka; Aleksandra Jurkowska; Małgorzata Kalisz; Piotr Domanowski; Danuta Kaczmarek; Jaroslaw Domaradzki

Abstract Titanium dioxide thin films were prepared using two types of magnetron sputtering processes: conventional and with modulated plasma. The films were deposited on SiO2 and Si substrates. X-ray diffraction measurements of prepared coatings revealed that the films prepared using both methods were nanocrystalline. However, the coatings deposited using conventional magnetron sputtering had anatase structure, while application of sputtering with modulated plasma made possible to obtain films with rutile phase. Investigations performed with the aid of scanning electron microscope showed significant difference in the surface morphology as well as the microstructure at the thin film cross-sections. The mechanical properties of the obtained coatings were determined on the basis of nanoindentation and abrasion resistance tests. The hardness was much higher for the films with the rutile structure, while the scratch resistance was similar in both cases. Optical properties were evaluated on the basis of transmittance measurements and showed that both coatings were well transparent in a visible wavelength range. Refractive index and extinction coefficient were higher for TiO2 with rutile structure.


International Journal of Photoenergy | 2014

Influence of Nd-Doping on Photocatalytic Properties of TiO2 Nanoparticles and Thin Film Coatings

Damian Wojcieszak; Michal Mazur; Michalina Kurnatowska; Danuta Kaczmarek; Jaroslaw Domaradzki; Leszek Kępiński; Kamil Chojnacki

Structural, optical, and photocatalytic properties of TiO2 and TiO2:Nd nanopowders and thin films composed of those materials have been compared. Titania nanoparticles with 1, 3, and 6 at. % of Nd-dopant were synthesized by sol-gel method. Additionally, thin films with the same material composition were prepared with the aid of spin-coating method. The analysis of structural investigations revealed that all as-prepared nanopowders were nanocrystalline and had TiO2-anatase structure. The average size of crystallites was ca. 4-5 nm and the correlation between the amount of neodymium and the size of TiO2 crystallites was observed. It was shown that the dopant content influenced the agglomeration of the nanoparticles. The results of photocatalytic decomposition of MO showed that doping with Nd (especially in the amount of 3 at. %) increased self-cleaning activity of the prepared titania nanopowder. Similar effect was received in case of the thin films, but the decomposition rate was lower due to their smaller active surface area. However, the as-prepared TiO2:Nd photocatalyst in the form of thin films or nanopowders seems to be a very attractive material for various applications.


Materials Science and Engineering: C | 2016

Influence of the surface properties on bactericidal and fungicidal activity of magnetron sputtered Ti-Ag and Nb-Ag thin films.

Damian Wojcieszak; Michal Mazur; Danuta Kaczmarek; P. Mazur; Bogumila Szponar; Jaroslaw Domaradzki; Leszek Kępiński

In this study the comparative investigations of structural, surface and bactericidal properties of Ti-Ag and Nb-Ag thin films have been carried out. Ti-Ag and Nb-Ag coatings were deposited on silicon and fused silica substrates by magnetron co-sputtering method using innovative multi-target apparatus. The physicochemical properties of prepared thin films were examined with the aid of X-ray diffraction, grazing incidence X-ray diffraction, scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy methods. Moreover, the wettability of the surface was determined. It was found that both, Ti-Ag and Nb-Ag thin films were nanocrystalline. In the case of Ag-Ti film presence of AgTi3 and Ag phases was identified, while in the structure of Nb-Ag only silver occurred in a crystal form. In both cases the average size of crystallites was ca. 11 nm. Moreover, according to scanning electron microscopy and atomic force microscopy investigations the surface of Nb-Ag thin films was covered with Ag-agglomerates, while Ti-Ag surface was smooth and devoid of silver particles. Studies of biological activity of deposited coatings in contact with Bacillus subtilis, Pseudomonas aeruginosa, Enterococcus hirae, Klebisiella pneumoniae, Escherichia coli, Staphylococcus aureus and Candida albicans were performed. It was found that prepared coatings were bactericidal and fungicidal even in a short term-contact, i.e. after 2 h.


Materials Science-poland | 2013

Structural and surface properties of TiO2 thin films doped with neodymium deposited by reactive magnetron sputtering

Michal Mazur; Danuta Kaczmarek; Jaroslaw Domaradzki; Damian Wojcieszak; Piotr Mazur; Eugeniusz Prociow

Thin films were deposited using modified, high energy magnetron sputtering method from Ti-Nd mosaic targets. The amount of neodymium dopant incorporated into two sets of thin films was estimated to be 0.8 and 8.5 at.%, by means of energy dispersive spectroscopy. On the basis of x-ray diffraction method, the type of crystalline structure and crystallites size were evaluated directly after the deposition process and after additional post-process annealing at 800 °C temperature. The influence of annealing on the surface properties was evaluated with the aid of atomic force microscopy. Uniformity of the dopant distribution in titanium dioxide matrix was examined with the aid of secondary ion mass spectroscopy. Additionally, using atomic force microscope, diversification and roughness of the surface was determined. Chemical bonds energy at the surface of TiO2:Nd thin films was investigated by x-ray photoelectron spectroscopy method. Wettability measurements were performed to determine contact angles, critical surface tensions and surface free energy of prepared coatings. On the basis of performed investigations it was found, that both factors, the amount of neodymium dopant and the post-process annealing, fundamentally influenced the physicochemical properties of prepared thin films.


Central European Journal of Physics | 2011

Influence of nanocrystalline structure and composition on hardness of thin films based on TiO2

Danuta Kaczmarek; Damian Wojcieszak; Jaroslaw Domaradzki; Eugeniusz Prociow; Frank Placido; Steffen Lapp; R. Dylewicz

In this work, the influence of Tb-doping on structure, and especially hardness of nanocrystalline TiO2 thin films, has been described. Thin films were formed by a high-energy reactive magnetron sputtering process in a pure oxygen atmosphere. Undoped TiO2-matrix and TiO2:Tb (2 at. % and 2.6 at. %) thin films, had rutile structure with crystallite sizes below 10 nm. The high-energy process produces nanocrystalline, homogenous films with a dense and close packed structure, that were confirmed by X-ray diffraction patterns and micrographs from a scanning electron microscope. Investigation of thin film hardness was performed with the aid of a nanoindentation technique. Results of measurements have shown that the hardness of all manufactured nanocrystalline films is above 10 GPa. In the case of undoped TiO2 matrix, the highest hardness value was obtained (14.3 GPa), while doping with terbium results in hardness decreasing down to 12.7 GPa and 10.8 GPa for TiO2:(2 at. % Tb) and TiO2:(2.6 at. % Tb) thin films, respectively. Incorporation of terbium into TiO2-matrix also allows modification of the elastic properties of the films.


Central European Journal of Physics | 2011

Photocatalytic properties of nanocrystalline TiO2 thin films doped with Tb

Damian Wojcieszak; Danuta Kaczmarek; Jaroslaw Domaradzki; Eugeniusz Prociow; Antoni W. Morawski; Magdalena Janus

In this work photocatalytic properties of TiO2 thin films doped with different amount of Tb have been described. Thin films were prepared by high energy reactive magnetron sputtering process. Comparable photocatalytic activity has been found for all doped TiO2 thin films, while different amounts of Tb dopant (0.4 and 2.6 at. %) results in either an anatase or rutile structure. It was found that the terbium dopant incorporated into TiO2 was also responsible for the amount of hydroxyl groups and water particles adsorbed on the thin film surfaces and thus photocatalytic activity was few times higher in comparison with results collected for undoped TiO2 thin films.

Collaboration


Dive into the Damian Wojcieszak's collaboration.

Top Co-Authors

Avatar

Danuta Kaczmarek

Wrocław University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jaroslaw Domaradzki

Wrocław University of Technology

View shared research outputs
Top Co-Authors

Avatar

Michal Mazur

Wrocław University of Technology

View shared research outputs
Top Co-Authors

Avatar

Eugeniusz Prociow

Wrocław University of Technology

View shared research outputs
Top Co-Authors

Avatar

Małgorzata Kalisz

Warsaw University of Technology

View shared research outputs
Top Co-Authors

Avatar

Agata Poniedziałek

Wrocław University of Technology

View shared research outputs
Top Co-Authors

Avatar

Karolina Sieradzka

Wrocław University of Technology

View shared research outputs
Top Co-Authors

Avatar

Bogumila Szponar

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

A. Borkowska

Wrocław University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jerzy Morgiel

Polish Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge