Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Damiano Cottalasso is active.

Publication


Featured researches published by Damiano Cottalasso.


Free Radical Biology and Medicine | 2002

Diabetes impairs the enzymatic disposal of 4-hydroxynonenal in rat liver.

Nicola Traverso; Stefano Menini; Patrizio Odetti; M.Adelaide Pronzato; Damiano Cottalasso; Umberto M. Marinari

This study assesses whether the HNE accumulation we formerly observed in liver microsomes and mitochondria of BB/Wor diabetic rats depends on an increased rate of lipoperoxidation or on impairment of enzymatic removal. There are three main HNE metabolizing enzymes: glutathione-S-transferase (GST), aldehyde dehydrogenase (ALDH), and alcohol dehydrogenase (ADH). In this study we show that GST and ALDH activities are reduced in liver microsomes and mitochondria of diabetic rats; in contrast, ADH activity remains unchanged. The role of each enzyme in HNE removal was evaluated by using enzymatic inhibitors. The roles of both GST and ALDH were markedly reduced in diabetic rats, while ADH-mediated consumption was significantly increased. However, the higher level of lipohydroperoxides in diabetic liver indicated more marked lipoperoxidation. We therefore think that HNE accumulation in diabetic liver may depend on both mechanisms: increased lipoperoxidation and decreased enzymatic removal. We suggest that glycoxidation and/or hyperglycemic pseudohypoxia may be involved in the enzymatic impairment observed. Moreover, since HNE exerts toxic effects on enzymes, HNE accumulation, deficiency of HNE removal, and production of reactive oxygen species can generate vicious circles able to amplify the damage.


Free Radical Biology and Medicine | 2000

Glutathione depletion induces apoptosis of rat hepatocytes through activation of protein kinase C novel isoforms and dependent increase in AP-1 nuclear binding

Cinzia Domenicotti; Dimitri Paola; Antonella Vitali; Mariapaola Nitti; Cristina d’Abramo; Damiano Cottalasso; Giuseppe Maloberti; Fiorella Biasi; Giuseppe Poli; Elena Chiarpotto; Umberto M. Marinari; Maria Adelaide Pronzato

Treatment of isolated rat hepatocytes with the glutathione depleting agents L-buthionine-S,R-sulfoximine or diethylmaleate reproduced various cellular conditions of glutathione depletion, from moderate to severe, similar to those occurring in a wide spectrum of human liver diseases. To evaluate molecular changes and possible cellular dysfunction and damage consequent to a pathophysiologic level of GSH depletion, the effects of this condition on protein kinase C (PKC) isoforms were investigated, since these are involved in the intracellular specific regulatory processes and are potentially sensitive to redox changes. Moreover, a moderate perturbation of cellular redox state was found to activate novel PKC isoforms, and a clear relationship was shown between novel kinase activation and nuclear binding of the redox-sensitive transcription factor, activator protein-1 (AP-1). Apoptotic death of a significant number of cells, confirmed in terms of internucleosomal DNA fragmentation was a possible effect of these molecular reactions, and was triggered by a condition of glutathione depletion usually detected in human liver diseases. Finally, the inhibition of novel PKC enzymatic activity in cells co-treated with rottlerin, a selective novel kinase inhibitor, prevented glutathione-dependent novel PKC up-regulation, markedly moderated AP-1 activation, and protected cells against apoptotic death. Taken together, these findings indicate the existence of an apoptotic pathway dependent on glutathione depletion, which occurs through the up-regulation of novel PKCs and AP-1.


Neuroscience Letters | 2007

PKC delta and NADPH oxidase in AGE-induced neuronal death.

Mariapaola Nitti; Anna L. Furfaro; Nicola Traverso; Patrizio Odetti; Daniela Storace; Damiano Cottalasso; Maria Adelaide Pronzato; Umberto M. Marinari; Cinzia Domenicotti

Advanced glycation end product (AGE) accumulation in brain is believed to contribute to neuronal death in several neurodegenerative diseases. Neurons exposed to AGEs undergo oxidative stress, but the molecular mechanisms able to induce ROS generation and cell death are not yet clear. In this work, we exposed SH-SY5Y neuroblastoma cells to glycated albumin, as a model of AGE-modified protein, and we observed that cells differentiated by retinoic acid died after AGE exposure, through anion superoxide and peroxide generation, while undifferentiated cells resulted resistant. Retinoic acid induced marked increase in p47phox expression and in catalytic activity of PKC delta: the upregulation of a pathway involving NADPH oxidase and PKC delta is likely to be responsible for neuronal susceptibility to AGE. This hypothesis is confirmed by the fact that pre-treatments of differentiated cells with DPI, an inhibitor of NADPH oxidase, or with rottlerin, an inhibitor of PKC delta, were able to prevent AGE-induced neuronal death.


Biochimica et Biophysica Acta | 1997

MUTUAL INTERACTION BETWEEN GLYCATION AND OXIDATION DURING NON-ENZYMATIC PROTEIN MODIFICATION

Nicola Traverso; Stefano Menini; Damiano Cottalasso; Patrizio Odetti; Umberto M. Marinari; M.Adelaide Pronzato

Aging pathogenesis involves non-enzymatic modifications of proteins; protein oxidation, glycation and their interactions have aroused a particular interest. Possible interrelations between oxidation and glycation have been evaluated in vitro: bovine serum albumin was oxidized by gamma-irradiation and then exposed to in vitro glycation. Fluorescence modifications induced by radiolytic oxidation and glycation were similar and tended to be additive. Both non-enzymatic processes provoked a loss of free sulfhydryl groups and a strong increment of protein carbonyl content: this supports that glycation can act through oxidative mechanisms. The observed rearrangement of amino groups after irradiation could predispose proteins to glycation attacks. Protein peroxides generated during irradiation appear able to give birth to further protein modifications leading to the generation of carbonyl groups and to interact with monosaccharides, probably stimulating their autoxidation and in turn glycative protein damage. Glycation increases the oxidation-mediated structural damage revealed by SDS-PAGE. Therefore our data support the hypothesis of mutual enhancement between oxidation and glycation of proteins and suggest possible molecular mechanisms of interactions.


Biochemical and Biophysical Research Communications | 2002

Activation of PKC-β isoforms mediates HNE-induced MCP-1 release by macrophages

Mariapaola Nitti; Cinzia Domenicotti; Cristina d'Abramo; Stefania Assereto; Damiano Cottalasso; Edon Melloni; Giuseppe Poli; Fiorella Biasi; Umberto M. Marinari; Maria Adelaide Pronzato

Abstract 4-Hydroxynonenal (HNE) in the concentration range detectable in many pathophysiologic conditions is able to modulate signal transduction cascades and gene expression. Here, we report the stimulating effect of 1 μM HNE on the release of the monocyte chemotactic protein-1 (MCP-1) by murine macrophages. MCP-1-increased export following 1-h cell treatment with HNE proved to be comparable to that exerted by standard amounts of bacterial lipopolysaccharide (LPS). However, the key molecular event in HNE-induced secretion of MCP-1 appeared to be the increased activity of β-PKC isoforms, which are recognized as playing a role in the regulation of cell protein transport and secretion. On the other hand, in LPS-stimulated cells, the δ isoform was seen to be involved and was probably related to LPS-mediated effects on MCP-1 expression and synthesis. In conclusion, HNE might interact with other pro-inflammatory stimuli, like LPS, in a concerted amplification of MCP-1 production and secretion.


Free Radical Biology and Medicine | 2003

Role of PKC-δ activity in glutathione-depleted neuroblastoma cells

Cinzia Domenicotti; Barbara Marengo; Daniela Verzola; Giacomo Garibotto; Nicola Traverso; Stefania Patriarca; Giuseppe Maloberti; Damiano Cottalasso; Giuseppe Poli; Mario Passalacqua; Edon Melloni; Maria Adelaide Pronzato; Umberto M. Marinari

Abstract Protein kinases C (PKCs) are a family of isoenzymes sensitive to oxidative modifications and involved in the transduction signal pathways that regulate cell growth. As such, they can act as cellular sensors able to intercept intracellular redox changes and promote the primary adaptive cell response. In this study, we have demonstrated that PKC isoforms are specifically influenced by the amount of intracellular glutathione (GSH). The greatest GSH depletion is associated with a maximal reactive oxygen species (ROS) production and accompanied by an increase in the activity of the δ isoform and a concomitant inactivation of α. ROS generation induced early morphological changes in GSH-depleted neuroblastoma cells characterized, at the intracellular level, by the modulation of PKC-δ activity that was involved in the pathway leading to apoptosis. When cells were pretreated with rottlerin, their survival was improved by the ability of this compound to inhibit the activity of PKC-δ and to counteract ROS production. These results define a novel role of PKC-δ in the cell signaling pathway triggered by GSH loss normally associated with many neurodegenerative diseases and clinically employed in the treatment of neuroblastoma.


Diabetes-metabolism Research and Reviews | 2000

Scanning force microscopy reveals structural alterations in diabetic rat collagen fibrils: role of protein glycation

Patrizio Odetti; Irene Aragno; R. Rolandi; Silvano Garibaldi; Sabina Valentini; L. Cosso; Nicola Traverso; Damiano Cottalasso; Maria Adelaide Pronzato; Umberto M. Marinari

The main functional property of collagen is to provide a supporting framework to almost all tissues: the effects of non‐enzymatic glycation on this protein are deleterious and in diabetes mellitus contribute to the mechanism of late complications. The aim of this work is to provide evidence by scanning force microscopy of modifications in collagen structure caused by high glucose concentration, in vivo and in vitro, and to correlate the data with markers of non‐enzymatic glycation.


Biochemical Pharmacology | 2003

A novel role of protein kinase C-δ in cell signaling triggered by glutathione depletion

Cinzia Domenicotti; Barbara Marengo; Mariapaola Nitti; Daniela Verzola; Giacomo Garibotto; Damiano Cottalasso; Giuseppe Poli; Edon Melloni; Maria Adelaide Pronzato; Umberto M. Marinari

Current evidence demonstrates that protein kinase C (PKC) belongs to a group of cell-signaling molecules that are sensitive targets for redox modifications and functional alterations that mediate oxidant-induced cellular responses. Our studies have demonstrated that diminished intracellular GSH was associated to inactivation of classic isoforms and increased activity of novel PKCs, and triggered molecular signals important for cell survival. Loss of GSH and oxidative damage are probably an early signaling event in apoptotic death, which is characterized by the activation of PKC-delta. Apoptotic process consequent to GSH depletion was inhibited by rottlerin, a PKC-delta-specific inhibitor, which exerted a negative effect on oxyradical production. Therefore, it may be concluded that PKC-delta activity is related to reactive oxygen species production and is involved in the pathway leading to apoptosis and growth arrest.


Free Radical Research | 1990

Effects of CCl4 poisoning on metabolism of dolichol in rat liver microsomes and Golgi apparatus.

Maria Adelaide Pronzato; Damiano Cottalasso; Cinzia Domenicotti; C. Tenca; Nicola Traverso; Giorgio Nanni; Umberto M. Marinari

Carbon tetrachloride (CCl4) poisoning affects glycoprotein processing and maturation at the level of rat liver microsomes and Golgi apparatus. HPLC analysis showed that within 5-60 min after CCl4 administration the levels of total dolichol, free dolichol and dolichyl-phosphate strongly decreased both in total microsomes and in Golgi apparatus. The most marked and early reduction of total dolichol was observed in the secretory membranes of Golgi area already 15 min after CCl4 poisoning. The incubation of CCl4-pretreated isolated hepatocytes with [3H]-mevalonate showed a significant slowing down of the label incorporation into both free-dolichol and dolichyl-phosphate. Moreover, lipid peroxidation might cause alterations in the molecular structure of both free-dolichol and dolichyl-phosphate. A notable prevention of dolichol decrease was observed in animals pretreated with vitamin E. The results suggest that the prooxidant activity of CCl4 is able to affect the metabolism of dolichol either by increasing the oxidative degradation or impairing the biosynthetic pathway.


Free Radical Research | 2001

Induction of heme oxygenase 1 in liver of spontaneously diabetic rats.

Luana Cosso; E. Pesce Maineri; Nicola Traverso; N. Rosatto; Maria Adelaide Pronzato; Damiano Cottalasso; Umberto M. Marinari; Patrizio Odetti

It has been suggested that diabetes induces an increase in oxidative stress; the increased expression of heme-oxygenase 1 (HO-1) in liver is believed to be a sensitive marker of the stress response. The aim of this study was to examine whether diabetes is able to induce HO-1 expression in liver. The specific mRNA was amplified by RT/PCR and calibrated with amplified β-actin mRNA. The mRNA HO-1 levels in the liver of spontaneously diabetic rats were increased by 1.8 fold compared with non diabetics; this supports the hypothesis of weak but significant oxidative damage due to chronic hyperglycaemia. This work represents the first in vivo study exploring the semi-quantitative expression of HO-1 in the liver of spontaneously diabetic rats.

Collaboration


Dive into the Damiano Cottalasso's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge