Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Damien A. Fordham is active.

Publication


Featured researches published by Damien A. Fordham.


Biodiversity and Conservation | 2010

Why tropical island endemics are acutely susceptible to global change

Damien A. Fordham; Barry W. Brook

Tropical islands are species foundries, formed either as a by-product of volcanism, when previously submerged seabed is thrust upwards by tectonics, or when a peninsula is isolated by rising sea level. After colonisation, the geographical isolation and niche vacancies provide the competitive impetus for an evolutionary radiation of distinct species-island endemics. Yet the very attributes which promote speciation in evolutionary time also leave island endemics highly vulnerable to recent and rapid impacts by modern people. Indeed, the majority of documented human-driven extinctions have been exacted upon island endemics. The causes include over-exploitation, invasive species brought by people and destruction of island’s naturally constrained habitats. Imminent threats include inundation by rising sea levels and other adaptive pressures related to anthropogenic global warming. We review recent work which underscores the susceptibility of island endemics to the drivers of global change, and suggest a methodological framework under which, we argue, the science and mitigation of island extinctions can be most productively advanced.


Nature Communications | 2016

Climate change not to blame for late Quaternary megafauna extinctions in Australia

Frédérik Saltré; Marta Rodríguez-Rey; Barry W. Brook; Christopher N. Johnson; Chris S. M. Turney; John Alroy; Alan Cooper; Nicholas J. Beeton; Michael I. Bird; Damien A. Fordham; Richard Gillespie; Salvador Herrando-Pérez; Zenobia Jacobs; Gifford H. Miller; David Nogués-Bravo; Gavin J. Prideaux; Richard G. Roberts

Late Quaternary megafauna extinctions impoverished mammalian diversity worldwide. The causes of these extinctions in Australia are most controversial but essential to resolve, because this continent-wide event presaged similar losses that occurred thousands of years later on other continents. Here we apply a rigorous metadata analysis and new ensemble-hindcasting approach to 659 Australian megafauna fossil ages. When coupled with analysis of several high-resolution climate records, we show that megafaunal extinctions were broadly synchronous among genera and independent of climate aridity and variability in Australia over the last 120,000 years. Our results reject climate change as the primary driver of megafauna extinctions in the worlds most controversial context, and instead estimate that the megafauna disappeared Australia-wide ∼13,500 years after human arrival, with shorter periods of coexistence in some regions. This is the first comprehensive approach to incorporate uncertainty in fossil ages, extinction timing and climatology, to quantify mechanisms of prehistorical extinctions.


Methods in Ecology and Evolution | 2015

Modelling range dynamics under global change: which framework and why?

Miguel Lurgi; Barry W. Brook; Frédérik Saltré; Damien A. Fordham

Summary To conserve future biodiversity, a better understanding of the likely effects of climate and land-use change on the geographical distributions of species and the persistence of ecological communities is needed. Recent advances have integrated population dynamic processes into species distribution models (SDMs), to reduce potential biases in predictions and to better reflect the demographic nuances of incremental range shifts. However, there is no clear framework for selecting the most appropriate demographic-based model for a given data set or scientific question. We review the computer-based modelling platforms currently used for the development of either population- or individual-based species range dynamics models. We describe the features and requirements of 20 software platforms commonly used to generate simulations of species ranges and abundances. We classify the platforms according to particular capabilities or features that account for user requirements and constraints, such as (i) ability to simulate simple to complex population dynamics, (ii) organism specificity or (iii) their computational capacities. Using this classification, we develop a protocol for choosing the most appropriate framework for modelling species range dynamics based in data availability and research requirements. We find that the main differences between modelling platforms are related to the way in which they simulate population dynamics, the type of organisms they are able to model and the ecological processes they incorporate. We show that some platforms can be used as generic modelling software to investigate a broad range of ecological questions related to the range dynamics of most species, and how these are likely to change in the future in response to forecast climate and land-use change. We argue that model predictions will be improved by reducing usage to a smaller number of highly flexible freeware platforms. Our approach provides ecologists and conservation biologists with a clear method for selecting the most appropriate software platform that meets their needs when developing SDMs coupled with population-dynamic processes. We argue that informed tool choice will translate to better predictions of species responses to climate and land-use change and improved conservation management.


Nature Communications | 2016

Early cave art and ancient DNA record the origin of European bison

Julien Soubrier; Graham Gower; Kefei Chen; Stephen M. Richards; Bastien Llamas; Kieren J. Mitchell; Simon Y. W. Ho; Pavel A. Kosintsev; Michael S. Y. Lee; Gennady F. Baryshnikov; Pere Bover; Joachim Burger; David Chivall; Evelyne Crégut-Bonnoure; Jared E. Decker; Vladimir B. Doronichev; Katerina Douka; Damien A. Fordham; Federica Fontana; Carole Fritz; Jan Glimmerveen; Liubov V. Golovanova; Colin P. Groves; Antonio Guerreschi; Wolfgang Haak; Thomas Higham; Emilia Hofman-Kamińska; Alexander Immel; Marie-Anne Julien; Johannes Krause

The two living species of bison (European and American) are among the few terrestrial megafauna to have survived the late Pleistocene extinctions. Despite the extensive bovid fossil record in Eurasia, the evolutionary history of the European bison (or wisent, Bison bonasus) before the Holocene (<11.7 thousand years ago (kya)) remains a mystery. We use complete ancient mitochondrial genomes and genome-wide nuclear DNA surveys to reveal that the wisent is the product of hybridization between the extinct steppe bison (Bison priscus) and ancestors of modern cattle (aurochs, Bos primigenius) before 120 kya, and contains up to 10% aurochs genomic ancestry. Although undetected within the fossil record, ancestors of the wisent have alternated ecological dominance with steppe bison in association with major environmental shifts since at least 55 kya. Early cave artists recorded distinct morphological forms consistent with these replacement events, around the Last Glacial Maximum (LGM, ∼21–18 kya).


Proceedings of the Royal Society of London B: Biological Sciences | 2014

Strong but opposing β-diversity-stability relationships in coral reef fish communities.

Camille Mellin; Damien A. Fordham; M. J. Caley

The ‘diversity–stability hypothesis’, in which higher species diversity within biological communities buffers the risk of ecological collapse, is now generally accepted. However, empirical evidence for a relationship between β-diversity (spatial turnover in community structure) and temporal stability in community structure remains equivocal, despite important implications for theoretical ecology and conservation biology. Here, we report strong β-diversity–stability relationships across a broad sample of fish taxa on Australias Great Barrier Reef. These relationships were robust to random sampling error and spatial and environmental factors, such as latitude, reef size and isolation. While β-diversity was positively associated with temporal stability at the community level, the relationship was negative for some taxa, for example surgeonfishes (Acanthuridae), one of the most abundant reef fish families. This demonstrates that the β-diversity–stability relationship should not be indiscriminately assumed for all taxa, but that a species’ risk of extirpation in response to disturbance is likely to be taxon specific and trait based. By combining predictions of spatial and temporal turnover across the study area with observations in marine-protected areas, we conclude that protection alone does not necessarily confer temporal stability and that taxon-specific considerations will improve the outcome of conservation efforts.


Nature Communications | 2016

Humans and seasonal climate variability threaten large-bodied coral reef fish with small ranges

Camille Mellin; David Mouillot; Michel Kulbicki; Tim R. McClanahan; Laurent Vigliola; Russell E. Brainard; Pascale Chabanet; Graham J. Edgar; Damien A. Fordham; Alan M. Friedlander; Valeriano Parravicini; Ana M. M. Sequeira; Rick D. Stuart-Smith; Laurent Wantiez; M. J. Caley

Coral reefs are among the most species-rich and threatened ecosystems on Earth, yet the extent to which human stressors determine species occurrences, compared with biogeography or environmental conditions, remains largely unknown. With ever-increasing human-mediated disturbances on these ecosystems, an important question is not only how many species can inhabit local communities, but also which biological traits determine species that can persist (or not) above particular disturbance thresholds. Here we show that human pressure and seasonal climate variability are disproportionately and negatively associated with the occurrence of large-bodied and geographically small-ranging fishes within local coral reef communities. These species are 67% less likely to occur where human impact and temperature seasonality exceed critical thresholds, such as in the marine biodiversity hotspot: the Coral Triangle. Our results identify the most sensitive species and critical thresholds of human and climatic stressors, providing opportunity for targeted conservation intervention to prevent local extinctions.


Journal of the Royal Society Interface | 2015

Timing and severity of immunizing diseases in rabbits is controlled by seasonal matching of host and pathogen dynamics

Konstans Wells; Barry W. Brook; Robert C. Lacy; Greg Mutze; David Peacock; Ron Sinclair; Nina Schwensow; Phillip Cassey; Robert B. O'Hara; Damien A. Fordham

Infectious diseases can exert a strong influence on the dynamics of host populations, but it remains unclear why such disease-mediated control only occurs under particular environmental conditions. We used 16 years of detailed field data on invasive European rabbits (Oryctolagus cuniculus) in Australia, linked to individual-based stochastic models and Bayesian approximations, to test whether (i) mortality associated with rabbit haemorrhagic disease (RHD) is driven primarily by seasonal matches/mismatches between demographic rates and epidemiological dynamics and (ii) delayed infection (arising from insusceptibility and maternal antibodies in juveniles) are important factors in determining disease severity and local population persistence of rabbits. We found that both the timing of reproduction and exposure to viruses drove recurrent seasonal epidemics of RHD. Protection conferred by insusceptibility and maternal antibodies controlled seasonal disease outbreaks by delaying infection; this could have also allowed escape from disease. The persistence of local populations was a stochastic outcome of recovery rates from both RHD and myxomatosis. If susceptibility to RHD is delayed, myxomatosis will have a pronounced effect on population extirpation when the two viruses coexist. This has important implications for wildlife management, because it is likely that such seasonal interplay and disease dynamics has a strong effect on long-term population viability for many species.


Ecology and Evolution | 2012

Long-term breeding phenology shift in royal penguins

Mark A. Hindell; Barry W. Brook; Damien A. Fordham; Knowles Kerry; Cindy L. Hull; Clive R. McMahon

The Earths climate is undergoing rapid warming, unprecedented in recent times, which is driving shifts in the distribution and phenology of many plants and animals. Quantifying changes in breeding phenology is important for understanding how populations respond to these changes. While data on shifts in phenology are common for Northern Hemisphere species (especially birds), there is a dearth of evidence from the Southern Hemisphere, and even fewer data available from the marine environment. Surface air temperatures at Macquarie Island have increased by 0.62°C during the 30-year study period (0.21°C decade−1) and royal penguins (Eudyptes schlegeli) commenced egg laying on average three days earlier in the 1990s than during the 1960s. This contrasts with other studies of Southern Ocean seabirds; five of nine species are now breeding on average 2.1 days later than during the 1950s. Despite the different direction of these trends, they can be explained by a single underlying mechanism: resource availability. There was a negative relationship between the Southern Annular Mode (SAM) and median laying date of royal penguins, such that low-productivity (low SAM) years delayed laying date. This accords with the observations of other seabird species from the Antarctic, where later laying dates were associated with lower sea ice and lower spring productivity. The unifying factor underpinning phenological trends in eastern Antarctica is therefore resource availability; as food becomes scarcer, birds breed later. These changes are not uniform across the region, however, with resource increases in the subantarctic and decreases in eastern Antarctica.


Biology Letters | 2014

How interactions between animal movement and landscape processes modify local range dynamics and extinction risk.

Damien A. Fordham; Kevin T. Shoemaker; Schumaker Nh; Hr Akçakaya; N. Clisby; Barry W. Brook

Forecasts of range dynamics now incorporate many of the mechanisms and interactions that drive species distributions. However, connectivity continues to be simulated using overly simple distance-based dispersal models with little consideration of how the individual behaviour of dispersing organisms interacts with landscape structure (functional connectivity). Here, we link an individual-based model to a niche-population model to test the implications of this omission. We apply this novel approach to a turtle species inhabiting wetlands which are patchily distributed across a tropical savannah, and whose persistence is threatened by two important synergistic drivers of global change: predation by invasive species and overexploitation. We show that projections of local range dynamics in this study system change substantially when functional connectivity is modelled explicitly. Accounting for functional connectivity in model simulations causes the estimate of extinction risk to increase, and predictions of range contraction to slow. We conclude that models of range dynamics that simulate functional connectivity can reduce an important source of bias in predictions of shifts in species distributions and abundances, especially for organisms whose dispersal behaviours are strongly affected by landscape structure.


PLOS ONE | 2012

Long-Term Field Data and Climate-Habitat Models Show That Orangutan Persistence Depends on Effective Forest Management and Greenhouse Gas Mitigation

Stephen D. Gregory; Barry W. Brook; Benoı̂t Goossens; Marc Ancrenaz; Raymond Alfred; Laurentius Ambu; Damien A. Fordham

Background Southeast Asian deforestation rates are among the world’s highest and threaten to drive many forest-dependent species to extinction. Climate change is expected to interact with deforestation to amplify this risk. Here we examine whether regional incentives for sustainable forest management will be effective in improving threatened mammal conservation, in isolation and when combined with global climate change mitigation. Methodology/Principal Findings Using a long time-series of orangutan nest counts for Sabah (2000–10), Malaysian Borneo, we evaluated the effect of sustainable forest management and climate change scenarios, and their interaction, on orangutan spatial abundance patterns. By linking dynamic land-cover and downscaled global climate model projections, we determine the relative influence of these factors on orangutan spatial abundance and use the resulting statistical models to identify habitat crucial for their long-term conservation. We show that land-cover change the degradation of primary forest had the greatest influence on orangutan population size. Anticipated climate change was predicted to cause reductions in abundance in currently occupied populations due to decreased habitat suitability, but also to promote population growth in western Sabah by increasing the suitability of presently unoccupied regions. Conclusions/Significance We find strong quantitative support for the Sabah government’s proposal to implement sustainable forest management in all its forest reserves during the current decade; failure to do so could result in a 40 to 80 per cent regional decline in orangutan abundance by 2100. The Sabah orangutan is just one (albeit iconic) example of a forest-dependent species that stands to benefit from sustainable forest management, which promotes conservation of existing forests.

Collaboration


Dive into the Damien A. Fordham's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Camille Mellin

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miguel B. Araújo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen D. Gregory

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge