Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Damien C. Croteau-Chonka is active.

Publication


Featured researches published by Damien C. Croteau-Chonka.


The New England Journal of Medicine | 2016

Patterns of Growth and Decline in Lung Function in Persistent Childhood Asthma.

Michael J. McGeachie; Katherine P. Yates; Xiaobo Zhou; Feng Guo; Alice L. Sternberg; Mark L. Van Natta; Robert A. Wise; Stanley J. Szefler; Sunita Sharma; Alvin T. Kho; Michael H. Cho; Damien C. Croteau-Chonka; Peter J. Castaldi; Gaurav Jain; Amartya Sanyal; Ye Zhan; Bryan R. Lajoie; Job Dekker; John A. Stamatoyannopoulos; Ronina A. Covar; Robert S. Zeiger; N. Franklin Adkinson; Paul T. Williams; H. William Kelly; Hartmut Grasemann; Judith M. Vonk; Gerard H. Koppelman; Dirkje S. Postma; Benjamin A. Raby; Isaac Houston

BACKGROUND Tracking longitudinal measurements of growth and decline in lung function in patients with persistent childhood asthma may reveal links between asthma and subsequent chronic airflow obstruction. METHODS We classified children with asthma according to four characteristic patterns of lung-function growth and decline on the basis of graphs showing forced expiratory volume in 1 second (FEV1), representing spirometric measurements performed from childhood into adulthood. Risk factors associated with abnormal patterns were also examined. To define normal values, we used FEV1 values from participants in the National Health and Nutrition Examination Survey who did not have asthma. RESULTS Of the 684 study participants, 170 (25%) had a normal pattern of lung-function growth without early decline, and 514 (75%) had abnormal patterns: 176 (26%) had reduced growth and an early decline, 160 (23%) had reduced growth only, and 178 (26%) had normal growth and an early decline. Lower baseline values for FEV1, smaller bronchodilator response, airway hyperresponsiveness at baseline, and male sex were associated with reduced growth (P<0.001 for all comparisons). At the last spirometric measurement (mean [±SD] age, 26.0±1.8 years), 73 participants (11%) met Global Initiative for Chronic Obstructive Lung Disease spirometric criteria for lung-function impairment that was consistent with chronic obstructive pulmonary disease (COPD); these participants were more likely to have a reduced pattern of growth than a normal pattern (18% vs. 3%, P<0.001). CONCLUSIONS Childhood impairment of lung function and male sex were the most significant predictors of abnormal longitudinal patterns of lung-function growth and decline. Children with persistent asthma and reduced growth of lung function are at increased risk for fixed airflow obstruction and possibly COPD in early adulthood. (Funded by the Parker B. Francis Foundation and others; ClinicalTrials.gov number, NCT00000575.).


PLOS Genetics | 2013

Trans-ethnic fine-mapping of lipid loci identifies population-specific signals and allelic heterogeneity that increases the trait variance explained.

Ying Wu; Lindsay L. Waite; Anne U. Jackson; Wayne H-H Sheu; Steven Buyske; Devin Absher; Donna K. Arnett; Eric Boerwinkle; Lori L. Bonnycastle; Cara L. Carty; Iona Cheng; Barbara Cochran; Damien C. Croteau-Chonka; Logan Dumitrescu; Charles B. Eaton; Nora Franceschini; Xiuqing Guo; Brian E. Henderson; Lucia A. Hindorff; Eric Kim; Leena Kinnunen; Pirjo Komulainen; Wen-Jane Lee; Loic Le Marchand; Yi-Chieh Lin; Jaana Lindström; Oddgeir Lingaas-Holmen; Sabrina L. Mitchell; Jennifer G. Robinson; Fred Schumacher

Genome-wide association studies (GWAS) have identified ∼100 loci associated with blood lipid levels, but much of the trait heritability remains unexplained, and at most loci the identities of the trait-influencing variants remain unknown. We conducted a trans-ethnic fine-mapping study at 18, 22, and 18 GWAS loci on the Metabochip for their association with triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C), respectively, in individuals of African American (n = 6,832), East Asian (n = 9,449), and European (n = 10,829) ancestry. We aimed to identify the variants with strongest association at each locus, identify additional and population-specific signals, refine association signals, and assess the relative significance of previously described functional variants. Among the 58 loci, 33 exhibited evidence of association at P<1×10−4 in at least one ancestry group. Sequential conditional analyses revealed that ten, nine, and four loci in African Americans, Europeans, and East Asians, respectively, exhibited two or more signals. At these loci, accounting for all signals led to a 1.3- to 1.8-fold increase in the explained phenotypic variance compared to the strongest signals. Distinct signals across ancestry groups were identified at PCSK9 and APOA5. Trans-ethnic analyses narrowed the signals to smaller sets of variants at GCKR, PPP1R3B, ABO, LCAT, and ABCA1. Of 27 variants reported previously to have functional effects, 74% exhibited the strongest association at the respective signal. In conclusion, trans-ethnic high-density genotyping and analysis confirm the presence of allelic heterogeneity, allow the identification of population-specific variants, and limit the number of candidate SNPs for functional studies.


Human Molecular Genetics | 2010

Genome-wide association study for adiponectin levels in Filipino women identifies CDH13 and a novel uncommon haplotype at KNG1–ADIPOQ

Ying Wu; Yun Li; Ethan M. Lange; Damien C. Croteau-Chonka; Christopher W. Kuzawa; Thomas W. McDade; Li Qin; Ghenadie Curocichin; Judith B. Borja; Leslie A. Lange; Linda S. Adair; Karen L. Mohlke

Adiponectin is an adipocyte-secreted protein involved in a variety of metabolic processes, including glucose regulation and fatty acid catabolism. We conducted a genome-wide association study to investigate the genetic loci associated with plasma adiponectin in 1776 unrelated Filipino women from the Cebu Longitudinal Health and Nutrition Survey (CLHNS). Our strongest signal for adiponectin mapped to the gene CDH13 (rs3865188, P ≤ 7.2 × 10(-16)), which encodes a receptor for high-molecular-weight forms of adiponectin. Strong association was also detected near the ADIPOQ gene (rs864265, P = 3.8 × 10(-9)) and at a novel signal 100 kb upstream near KNG1 (rs11924390, P = 7.6 × 10(-7)). All three signals were also observed in 1774 young adult CLHNS offspring and in combined analysis including all 3550 mothers and offspring samples (all P ≤ 1.6 × 10(-9)). An uncommon haplotype of rs11924390 and rs864265 (haplotype frequency = 0.050) was strongly associated with lower adiponectin compared with the most common C-G haplotype in both CLHNS mothers (P = 1.8 × 10(-25)) and offspring (P = 8.7 × 10(-32)). Comprehensive imputation of 2653 SNPs in a 2 Mb region using as reference combined CHB, JPT and CEU haplotypes from the 1000 Genomes Project revealed no variants that perfectly tagged this haplotype. Our findings provide the first genome-wide significant evidence of association with plasma adiponectin at the CDH13 locus and identify a novel uncommon KNG1-ADIPOQ haplotype strongly associated with adiponectin levels in Filipinos.


Obesity | 2011

Genome‐Wide Association Study of Anthropometric Traits and Evidence of Interactions With Age and Study Year in Filipino Women

Damien C. Croteau-Chonka; Amanda F. Marvelle; Ethan M. Lange; Nanette R. Lee; Linda S. Adair; Leslie A. Lange; Karen L. Mohlke

Increased values of multiple adiposity‐related anthropometric traits are important risk factors for many common complex diseases. We performed a genome‐wide association (GWA) study for four quantitative traits related to body size and adiposity (BMI, weight, waist circumference, and height) in a cohort of 1,792 adult Filipino women from the Cebu Longitudinal Health and Nutrition Survey (CLHNS). This is the first GWA study of anthropometric traits in Filipinos, a population experiencing a rapid transition into a more obesogenic environment. In addition to identifying suggestive evidence of additional single‐nucleotide polymorphism (SNP) association signals (P < 10−5), we replicated (P < 0.05, same direction of additive effect) associations previously reported in European populations of both BMI and weight with MC4R and FTO, of BMI with BDNF, and of height with EFEMP1, ZBTB38, and NPPC, but none with waist circumference. We also replicated loci reported in Japanese or Korean populations as associated with BMI (OTOL1) and height (HIST1H1PS2, C14orf145, GPC5). A difference in local linkage disequilibrium (LD) between European and Asian populations suggests a narrowed association region for BDNF, while still including a proposed functional nonsynonymous amino acid substitution variant (rs6265, Val66Met). Finally, we observed significant evidence (P < 0.0042) for age‐by‐genotype interactions influencing BMI for rs17782313 (MC4R) and rs9939609 (FTO), and for a study year‐by‐genotype interaction for rs4923461 (BDNF). Our results show that several genetic risk factors are associated with anthropometric traits in Filipinos and provide further insight into the effects of BDNF, FTO, and MC4R on BMI.


Human Molecular Genetics | 2010

Genome-wide association study of homocysteine levels in Filipinos provides evidence for CPS1 in women and a stronger MTHFR effect in young adults

Leslie A. Lange; Damien C. Croteau-Chonka; Amanda F. Marvelle; Li Qin; Kyle J. Gaulton; Christopher W. Kuzawa; Thomas W. McDade; Yunfei Wang; Yun Li; Shawn Levy; Judith B. Borja; Ethan M. Lange; Linda S. Adair; Karen L. Mohlke

Plasma homocysteine (Hcy) level is associated with cardiovascular disease and may play an etiologic role in vascular damage, a precursor for atherosclerosis. We performed a genome-wide association study for Hcy in 1786 unrelated Filipino women from the Cebu Longitudinal Health and Nutrition Survey (CLHNS). The most strongly associated single-nucleotide polymorphism (SNP) (rs7422339, P = 4.7 x 10(-13)) encodes Thr1405Asn in the gene CPS1 and explained 3.0% of variation in the Hcy level. The widely studied MTHFR C677T SNP (rs1801133) was also highly significant (P = 8.7 x 10(-10)) and explained 1.6% of the trait variation. We also genotyped these two SNPs in 1679 CLHNS young adult offspring. The MTHFR C677T SNP was strongly associated with Hcy (P = 1.9 x 10(-26)) and explained approximately 5.1% of the variation in the offspring. In contrast, the CPS1 variant was significant only in females (P = 0.11 in all; P = 0.0087 in females). Combined analysis of all samples confirmed that the MTHFR variant was more strongly associated with Hcy in the offspring (interaction P = 1.2 x 10(-5)). Furthermore, although there was evidence for a positive synergistic effect between the CPS1 and MTHFR SNPs in the offspring (interaction P = 0.0046), there was no significant evidence for an interaction in the mothers (P = 0.55). These data confirm a recent finding that CPS1 is a locus influencing Hcy levels in women and suggest that genetic effects on Hcy may differ across developmental stages.


Nature Genetics | 2017

Limited statistical evidence for shared genetic effects of eQTLs and autoimmune-disease-associated loci in three major immune-cell types

Sung Chun; Alexandra Casparino; Nikolaos A. Patsopoulos; Damien C. Croteau-Chonka; Benjamin A. Raby; Philip L. De Jager; Shamil R. Sunyaev; Chris Cotsapas

Most autoimmune-disease-risk effects identified by genome-wide association studies (GWAS) localize to open chromatin with gene-regulatory activity. GWAS loci are also enriched in expression quantitative trait loci (eQTLs), thus suggesting that most risk variants alter gene expression. However, because causal variants are difficult to identify, and cis-eQTLs occur frequently, it remains challenging to identify specific instances of disease-relevant changes to gene regulation. Here, we used a novel joint likelihood framework with higher resolution than that of previous methods to identify loci where autoimmune-disease risk and an eQTL are driven by a single shared genetic effect. Using eQTLs from three major immune subpopulations, we found shared effects in only ∼25% of the loci examined. Thus, we show that a fraction of gene-regulatory changes suggest strong mechanistic hypotheses for disease risk, but we conclude that most risk mechanisms are not likely to involve changes in basal gene expression.


Human Molecular Genetics | 2014

A meta-analysis of genome-wide association studies for adiponectin levels in East Asians identifies a novel locus near WDR11-FGFR2

Ying Wu; He Gao; Huaixing Li; Yasuharu Tabara; Masahiro Nakatochi; Yen Feng Chiu; Eun Jung Park; Wanqing Wen; Linda S. Adair; Judith B. Borja; Qiuyin Cai; Yi-Cheng Chang; Peng Chen; Damien C. Croteau-Chonka; Marie P. Fogarty; Wei Gan; Chih Tsueng He; Chao A. Hsiung; Chii Min Hwu; Sahoko Ichihara; Michiya Igase; Jaeseong Jo; Norihiro Kato; Ryuichi Kawamoto; Christophor W. Kuzawa; Jeannette Lee; Jianjun Liu; Ling Lu; Thomas W. McDade; Haruhiko Osawa

Blood levels of adiponectin, an adipocyte-secreted protein correlated with metabolic and cardiovascular risks, are highly heritable. Genome-wide association (GWA) studies for adiponectin levels have identified 14 loci harboring variants associated with blood levels of adiponectin. To identify novel adiponectin-associated loci, particularly those of importance in East Asians, we conducted a meta-analysis of GWA studies for adiponectin in 7827 individuals, followed by two stages of replications in 4298 and 5954 additional individuals. We identified a novel adiponectin-associated locus on chromosome 10 near WDR11-FGFR2 (P = 3.0 × 10(-14)) and provided suggestive evidence for a locus on chromosome 12 near OR8S1-LALBA (P = 1.2 × 10(-7)). Of the adiponectin-associated loci previously described, we confirmed the association at CDH13 (P = 6.8 × 10(-165)), ADIPOQ (P = 1.8 × 10(-22)), PEPD (P = 3.6 × 10(-12)), CMIP (P = 2.1 × 10(-10)), ZNF664 (P = 2.3 × 10(-7)) and GPR109A (P = 7.4 × 10(-6)). Conditional analysis at ADIPOQ revealed a second signal with suggestive evidence of association only after conditioning on the lead SNP (Pinitial = 0.020; Pconditional = 7.0 × 10(-7)). We further confirmed the independence of two pairs of closely located loci (<2 Mb) on chromosome 16 at CMIP and CDH13, and on chromosome 12 at GPR109A and ZNF664. In addition, the newly identified signal near WDR11-FGFR2 exhibited evidence of association with triglycerides (P = 3.3 × 10(-4)), high density lipoprotein cholesterol (HDL-C, P = 4.9 × 10(-4)) and body mass index (BMI)-adjusted waist-hip ratio (P = 9.8 × 10(-3)). These findings improve our knowledge of the genetic basis of adiponectin variation, demonstrate the shared allelic architecture for adiponectin with lipids and central obesity and motivate further studies of underlying mechanisms.


Immunity, inflammation and disease | 2015

The metabolomics of asthma control: a promising link between genetics and disease

Michael J. McGeachie; Amber Dahlin; Weiliang Qiu; Damien C. Croteau-Chonka; Jessica H. Savage; Ann Chen Wu; Emily S. Wan; Joanne E. Sordillo; Amal Al-Garawi; Fernando D. Martinez; Robert C. Strunk; Robert F. Lemanske; Andrew H. Liu; Benjamin A. Raby; Scott Weiss; Clary B. Clish; Jessica Lasky-Su

Short‐acting β agonists (e.g., albuterol) are the most commonly used medications for asthma, a disease that affects over 300 million people in the world. Metabolomic profiling of asthmatics taking β agonists presents a new and promising resource for identifying the molecular determinants of asthma control. The objective is to identify novel genetic and biochemical predictors of asthma control using an integrative “omics” approach. We generated lipidomic data by liquid chromatography tandem mass spectrometry (LC‐MS), using plasma samples from 20 individuals with asthma. The outcome of interest was a binary indicator of asthma control defined by the use of albuterol inhalers in the preceding week. We integrated metabolomic data with genome‐wide genotype, gene expression, and methylation data of this cohort to identify genomic and molecular indicators of asthma control. A Conditional Gaussian Bayesian Network (CGBN) was generated using the strongest predictors from each of these analyses. Integrative and metabolic pathway over‐representation analyses (ORA) identified enrichment of known biological pathways within the strongest molecular determinants. Of the 64 metabolites measured, 32 had known identities. The CGBN model based on four SNPs (rs9522789, rs7147228, rs2701423, rs759582) and two metabolites—monoHETE_0863 and sphingosine‐1‐phosphate (S1P) could predict asthma control with an AUC of 95%. Integrative ORA identified 17 significantly enriched pathways related to cellular immune response, interferon signaling, and cytokine‐related signaling, for which arachidonic acid, PGE2 and S1P, in addition to six genes (CHN1, PRKCE, GNA12, OASL, OAS1, and IFIT3) appeared to drive the pathway results. Of these predictors, S1P, GNA12, and PRKCE were enriched in the results from integrative and metabolic ORAs. Through an integrative analysis of metabolomic, genomic, and methylation data from a small cohort of asthmatics, we implicate altered metabolic pathways, related to sphingolipid metabolism, in asthma control. These results provide insight into the pathophysiology of asthma control.


American Journal of Respiratory and Critical Care Medicine | 2015

Stress and Bronchodilator Response in Children with Asthma

John M. Brehm; Sima K. Ramratnam; Sze Man Tse; Damien C. Croteau-Chonka; Maria Pino-Yanes; Christian Rosas-Salazar; Augusto A. Litonjua; Benjamin A. Raby; Nadia Boutaoui; Yueh Ying Han; Wei Chen; Erick Forno; Anna L. Marsland; Nicole R. Nugent; Celeste Eng; Angel Colón-Semidey; María Alvarez; Edna Acosta-Pérez; Melissa L. Spear; Fernando D. Martinez; Lydiana Avila; Scott T. Weiss; Manuel Soto-Quiros; Carole Ober; Dan L. Nicolae; Kathleen C. Barnes; Robert F. Lemanske; Robert C. Strunk; Andrew H. Liu; Stephanie J. London

RATIONALE Stress is associated with asthma morbidity in Puerto Ricans (PRs), who have reduced bronchodilator response (BDR). OBJECTIVES To examine whether stress and/or a gene regulating anxiety (ADCYAP1R1) is associated with BDR in PR and non-PR children with asthma. METHODS This was a cross-sectional study of stress and BDR (percent change in FEV1 after BD) in 234 PRs ages 9-14 years with asthma. We assessed child stress using the Checklist of Childrens Distress Symptoms, and maternal stress using the Perceived Stress Scale. Replication analyses were conducted in two cohorts. Polymorphisms in ADCYAP1R1 were genotyped in our study and six replication studies. Multivariable models of stress and BDR were adjusted for age, sex, income, environmental tobacco smoke, and use of inhaled corticosteroids. MEASUREMENTS AND MAIN RESULTS High child stress was associated with reduced BDR in three cohorts. PR children who were highly stressed (upper quartile, Checklist of Childrens Distress Symptoms) and whose mothers had high stress (upper quartile, Perceived Stress Scale) had a BDR that was 10.2% (95% confidence interval, 6.1-14.2%) lower than children who had neither high stress nor a highly stressed mother. A polymorphism in ADCYAP1R1 (rs34548976) was associated with reduced BDR. This single-nucleotide polymorphism is associated with reduced expression of the gene for the β2-adrenergic receptor (ADRB2) in CD4(+) lymphocytes of subjects with asthma, and it affects brain connectivity of the amygdala and the insula (a biomarker of anxiety). CONCLUSIONS High child stress and an ADCYAP1R1 single-nucleotide polymorphism are associated with reduced BDR in children with asthma. This is likely caused by down-regulation of ADRB2 in highly stressed children.


Human Molecular Genetics | 2012

Population-specific coding variant underlies genome-wide association with adiponectin level

Damien C. Croteau-Chonka; Ying Wu; Yun Li; Marie P. Fogarty; Leslie A. Lange; Christopher W. Kuzawa; Thomas W. McDade; Judith B. Borja; Jingchun Luo; Omar Abdelbaky; Terry P. Combs; Linda S. Adair; Ethan M. Lange; Karen L. Mohlke

Adiponectin is a protein hormone that can affect major metabolic processes including glucose regulation and fat metabolism. Our previous genome-wide association (GWA) study of circulating plasma adiponectin levels in Filipino women from the Cebu Longitudinal Health and Nutrition Survey (CLHNS) detected a 100 kb two-SNP haplotype at KNG1-ADIPOQ associated with reduced adiponectin (frequency = 0.050, P = 1.8 × 10(-25)). Subsequent genotyping of CLHNS young adult offspring detected an uncommon variant [minor allele frequency (MAF) = 0.025] located ~800 kb from ADIPOQ that showed strong association with lower adiponectin levels (P = 2.7 × 10(-15), n = 1695) and tagged a subset of KNG1-ADIPOQ haplotype carriers with even lower adiponectin levels. Sequencing of the ADIPOQ-coding region detected variant R221S (MAF = 0.015, P = 2.9 × 10(-69)), which explained 17.1% of the variance in adiponectin levels and largely accounted for the initial GWA signal in Filipinos. R221S was not present in 12 514 Europeans with previously sequenced exons. To explore the mechanism of this substitution, we re-measured adiponectin level in 20 R221S offspring carriers and 20 non-carriers using two alternative antibodies and determined that the presence of R221S resulted in artificially low quantification of adiponectin level using the original immunoassay. These data provide an example of an uncommon variant responsible for a GWA signal and demonstrate that genetic associations with phenotypes measured by antibody-based quantification methods can be affected by uncommon coding SNPs residing in the antibody target region.

Collaboration


Dive into the Damien C. Croteau-Chonka's collaboration.

Top Co-Authors

Avatar

Benjamin A. Raby

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Scott T. Weiss

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Michael J. McGeachie

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Weiliang Qiu

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Karen L. Mohlke

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew H. Liu

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linda S. Adair

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Vincent J. Carey

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge