Damien Chaussabel
Qatar Airways
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Damien Chaussabel.
Nature | 2010
Matthew Berry; Christine M. Graham; Finlay W. McNab; Zhaohui Xu; Susannah A. A. Bloch; Tolu Oni; Katalin A. Wilkinson; Romain Banchereau; Jason A. Skinner; Robert J. Wilkinson; Charles Quinn; Derek Blankenship; Ranju T. Dhawan; John J. Cush; Asuncion Mejias; Octavio Ramilo; Onn M. Kon; Virginia Pascual; Jacques Banchereau; Damien Chaussabel; Anne O’Garra
Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis, is a major cause of morbidity and mortality worldwide. Efforts to control it are hampered by difficulties with diagnosis, prevention and treatment. Most people infected with M. tuberculosis remain asymptomatic, termed latent TB, with a 10% lifetime risk of developing active TB disease. Current tests, however, cannot identify which individuals will develop disease. The immune response to M. tuberculosis is complex and incompletely characterized, hindering development of new diagnostics, therapies and vaccines. Here we identify a whole-blood 393 transcript signature for active TB in intermediate and high-burden settings, correlating with radiological extent of disease and reverting to that of healthy controls after treatment. A subset of patients with latent TB had signatures similar to those in patients with active TB. We also identify a specific 86-transcript signature that discriminates active TB from other inflammatory and infectious diseases. Modular and pathway analysis revealed that the TB signature was dominated by a neutrophil-driven interferon (IFN)-inducible gene profile, consisting of both IFN-γ and type I IFN-αβ signalling. Comparison with transcriptional signatures in purified cells and flow cytometric analysis suggest that this TB signature reflects changes in cellular composition and altered gene expression. Although an IFN-inducible signature was also observed in whole blood of patients with systemic lupus erythematosus (SLE), their complete modular signature differed from TB, with increased abundance of plasma cell transcripts. Our studies demonstrate a hitherto underappreciated role of type I IFN-αβ signalling in the pathogenesis of TB, which has implications for vaccine and therapeutic development. Our study also provides a broad range of transcriptional biomarkers with potential as diagnostic and prognostic tools to combat the TB epidemic.
Immunity | 2008
Eynav Klechevsky; Rimpei Morita; Maochang Liu; Yanying Cao; Sebastien Coquery; LuAnn Thompson-Snipes; Francine Briere; Damien Chaussabel; Gerard Zurawski; A. Karolina Palucka; Yoram Reiter; Jacques Banchereau; Hideki Ueno
Little is known about the functional differences between the human skin myeloid dendritic cell (DC) subsets, epidermal CD207(+) Langerhans cells (LCs) and dermal CD14(+) DCs. We showed that CD14(+) DCs primed CD4(+) T cells into cells that induce naive B cells to switch isotype and become plasma cells. In contrast, LCs preferentially induced the differentiation of CD4(+) T cells secreting T helper 2 (Th2) cell cytokines and were efficient at priming and crosspriming naive CD8(+) T cells. A third DC population, CD14(-)CD207(-)CD1a(+) DC, which resides in the dermis, could activate CD8(+) T cells better than CD14(+) DCs but less efficiently than LCs. Thus, the human skin displays three DC subsets, two of which, i.e., CD14(+) DCs and LCs, display functional specializations, the preferential activation of humoral and cellular immunity, respectively.
Immunity | 2008
Damien Chaussabel; Charles Quinn; Jing Shen; Pinakeen Patel; Casey Glaser; Nicole Baldwin; Dorothee Stichweh; Derek Blankenship; Lei Li; Indira Munagala; Lynda Bennett; Florence Allantaz; Asuncion Mejias; Monica I. Ardura; Ellen Kaizer; Laurence Monnet; Windy Allman; Henry B. Randall; Diane Johnson; Aimee Lanier; Marilynn Punaro; Knut M. Wittkowski; Perrin C. White; Joseph W. Fay; Goran B. Klintmalm; Octavio Ramilo; A. Karolina Palucka; Jacques Banchereau; Virginia Pascual
The analysis of patient blood transcriptional profiles offers a means to investigate the immunological mechanisms relevant to human diseases on a genome-wide scale. In addition, such studies provide a basis for the discovery of clinically relevant biomarker signatures. We designed a strategy for microarray analysis that is based on the identification of transcriptional modules formed by genes coordinately expressed in multiple disease data sets. Mapping changes in gene expression at the module level generated disease-specific transcriptional fingerprints that provide a stable framework for the visualization and functional interpretation of microarray data. These transcriptional modules were used as a basis for the selection of biomarkers and the development of a multivariate transcriptional indicator of disease progression in patients with systemic lupus erythematosus. Thus, this work describes the implementation and application of a methodology designed to support systems-scale analysis of the human immune system in translational research settings.
The New England Journal of Medicine | 2011
Sophie Hambleton; Sandra Salem; Jacinta Bustamante; Venetia Bigley; Stéphanie Boisson-Dupuis; Joana Azevedo; Anny Fortin; Muzlifah Haniffa; Lourdes Ceron-Gutierrez; Chris M. Bacon; Geetha Menon; Céline Trouillet; David McDonald; Peter Carey; Florent Ginhoux; Laia Alsina; Timothy Zumwalt; Xiao-Fei Kong; Dinakantha Kumararatne; Karina Butler; Marjorie Hubeau; Jacqueline Feinberg; Saleh Al-Muhsen; Andrew J. Cant; Laurent Abel; Damien Chaussabel; Rainer Doffinger; Eduardo Talesnik; Anete Sevciovic Grumach; Alberto José da Silva Duarte
BACKGROUND The genetic analysis of human primary immunodeficiencies has defined the contribution of specific cell populations and molecular pathways in the host defense against infection. Disseminated infection caused by bacille Calmette-Guérin (BCG) vaccines is an early manifestation of primary immunodeficiencies, such as severe combined immunodeficiency. In many affected persons, the cause of disseminated BCG disease is unexplained. METHODS We evaluated an infant presenting with features of severe immunodeficiency, including early-onset disseminated BCG disease, who required hematopoietic stem-cell transplantation. We also studied two otherwise healthy subjects with a history of disseminated but curable BCG disease in childhood. We characterized the monocyte and dendritic-cell compartments in these three subjects and sequenced candidate genes in which mutations could plausibly confer susceptibility to BCG disease. RESULTS We detected two distinct disease-causing mutations affecting interferon regulatory factor 8 (IRF8). Both K108E and T80A mutations impair IRF8 transcriptional activity by disrupting the interaction between IRF8 and DNA. The K108E variant was associated with an autosomal recessive severe immunodeficiency with a complete lack of circulating monocytes and dendritic cells. The T80A variant was associated with an autosomal dominant, milder immunodeficiency and a selective depletion of CD11c+CD1c+ circulating dendritic cells. CONCLUSIONS These findings define a class of human primary immunodeficiencies that affect the differentiation of mononuclear phagocytes. They also show that human IRF8 is critical for the development of monocytes and dendritic cells and for antimycobacterial immunity. (Funded by the Medical Research Council and others.).
Nature | 2010
Cristiana Guiducci; Mei Gong; Zhaohui Xu; Michelle A. Gill; Damien Chaussabel; Thea Meeker; Jean H. Chan; Tracey Wright; Marilynn Punaro; Silvia Bolland; Vassili Soumelis; Jacques Banchereau; Robert L. Coffman; Virginia Pascual; Franck J. Barrat
Glucocorticoids are widely used to treat patients with autoimmune diseases such as systemic lupus erythematosus (SLE). However, regimens used to treat many such conditions cannot maintain disease control in the majority of SLE patients and more aggressive approaches such as high-dose methylprednisolone pulse therapy are used to provide transient reductions in disease activity. The primary anti-inflammatory mechanism of glucocorticoids is thought to be NF-κB inhibition. Recognition of self nucleic acids by toll-like receptors TLR7 and TLR9 on B cells and plasmacytoid dendritic cells (PDCs) is an important step in the pathogenesis of SLE, promoting anti-nuclear antibodies and the production of type I interferon (IFN), both correlated with the severity of disease. Following their activation by self-nucleic acid-associated immune complexes, PDCs migrate to the tissues. We demonstrate, in vitro and in vivo, that stimulation of PDCs through TLR7 and 9 can account for the reduced activity of glucocorticoids to inhibit the IFN pathway in SLE patients and in two lupus-prone mouse strains. The triggering of PDCs through TLR7 and 9 by nucleic acid-containing immune complexes or by synthetic ligands activates the NF-κB pathway essential for PDC survival. Glucocorticoids do not affect NF-κB activation in PDCs, preventing glucocorticoid induction of PDC death and the consequent reduction of systemic IFN-α levels. These findings unveil a new role for self nucleic acid recognition by TLRs and indicate that inhibitors of TLR7 and 9 signalling could prove to be effective corticosteroid-sparing drugs.
Journal of Experimental Medicine | 2007
Florence Allantaz; Damien Chaussabel; Dorothee Stichweh; Lynda Bennett; Windy Allman; Asuncion Mejias; Monica I. Ardura; Wendy Chung; Elisabeth J Smith; Carol A. Wise; Karolina Palucka; Octavio Ramilo; Marilynn Punaro; Jacques Banchereau; Virginia Pascual
Systemic onset juvenile idiopathic arthritis (SoJIA) represents up to 20% of juvenile idiopathic arthritis. We recently reported that interleukin (IL) 1 is an important mediator of this disease and that IL-1 blockade induces clinical remission. However, lack of specificity of the initial systemic manifestations leads to delays in diagnosis and initiation of therapy. To develop a specific diagnostic test, we analyzed leukocyte gene expression profiles of 44 pediatric SoJIA patients, 94 pediatric patients with acute viral and bacterial infections, 38 pediatric patients with systemic lupus erythematosus (SLE), 6 patients with PAPA syndrome, and 39 healthy children. Statistical group comparison and class prediction identified genes differentially expressed in SoJIA patients compared with healthy children. These genes, however, were also changed in patients with acute infections and SLE. An analysis of significance across all diagnostic groups identified 88 SoJIA-specific genes, 12 of which accurately classified an independent set of SoJIA patients with systemic disease. Transcripts that changed significantly in patients undergoing IL-1 blockade were also identified. Thus, leukocyte transcriptional signatures can be used to distinguish SoJIA from other febrile illnesses and to assess response to therapy. Availability of early diagnostic markers may allow prompt initiation of therapy and prevention of disabilities.
Journal of Clinical Investigation | 2011
Vanessa Sancho-Shimizu; Rebeca Pérez de Diego; Lazaro Lorenzo; Rabih Halwani; Abdullah A. Alangari; Elisabeth Israelsson; Sylvie Fabrega; Annabelle Cardon; Jérome Maluenda; Megumi Tatematsu; Farhad Mahvelati; Melina Herman; Michael J. Ciancanelli; Yiqi Guo; Zobaida Alsum; Nouf Alkhamis; Abdulkarim S. Al-Makadma; Ata Ghadiri; Soraya Boucherit; Sabine Plancoulaine; Capucine Picard; Flore Rozenberg; Marc Tardieu; Pierre Lebon; Emmanuelle Jouanguy; Nima Rezaei; Tsukasa Seya; Misako Matsumoto; Damien Chaussabel; Anne Puel
Herpes simplex encephalitis (HSE) is the most common sporadic viral encephalitis of childhood. Autosomal recessive (AR) UNC-93B and TLR3 deficiencies and autosomal dominant (AD) TLR3 and TRAF3 deficiencies underlie HSE in some children. We report here unrelated HSE children with AR or AD TRIF deficiency. The AR form of the disease was found to be due to a homozygous nonsense mutation that resulted in a complete absence of the TRIF protein. Both the TLR3- and the TRIF-dependent TLR4 signaling pathways were abolished. The AD form of disease was found to be due to a heterozygous missense mutation, resulting in a dysfunctional protein. In this form of the disease, the TLR3 signaling pathway was impaired, whereas the TRIF-dependent TLR4 pathway was unaffected. Both patients, however, showed reduced capacity to respond to stimulation of the DExD/H-box helicases pathway. To date, the TRIF-deficient patients with HSE described herein have suffered from no other infections. Moreover, as observed in patients with other genetic etiologies of HSE, clinical penetrance was found to be incomplete, as some HSV-1-infected TRIF-deficient relatives have not developed HSE. Our results provide what we believe to be the first description of human TRIF deficiency and a new genetic etiology for HSE. They suggest that the TRIF-dependent TLR4 and DExD/H-box helicase pathways are largely redundant in host defense. They further demonstrate the importance of TRIF for the TLR3-dependent production of antiviral IFNs in the CNS during primary infection with HSV-1 in childhood.
Journal of Experimental Medicine | 2011
Yiqi Guo; Michael J. Ciancanelli; Laia Alsina; Joana Azevedo; Melina Herman; Esperanza Anguiano; Vanessa Sancho-Shimizu; Lazaro Lorenzo; Elodie Pauwels; Paul Bastard Philippe; Rebeca Pérez de Diego; Annabelle Cardon; Guillaume Vogt; Capucine Picard; Zafitsara Zo Andrianirina; Flore Rozenberg; Pierre Lebon; Sabine Plancoulaine; Marc Tardieu; Valérie Doireau; Emmanuelle Jouanguy; Damien Chaussabel; Frederic Geissmann; Laurent Abel; Jean-Laurent Casanova; Shen-Ying Zhang
A new autosomal recessive form of complete TLR3 deficiency reveals that human TLR3 is nonredundant in immunity against herpes simplex virus 1 in the central nervous system (CNS) but redundant in host defense against viruses outside the CNS.
BMC Biology | 2010
Damien Chaussabel; Virginia Pascual; Jacques Banchereau
Blood is the pipeline of the immune system. Assessing changes in transcript abundance in blood on a genome-wide scale affords a comprehensive view of the status of the immune system in health and disease. This review summarizes the work that has used this approach to identify therapeutic targets and biomarker signatures in the field of autoimmunity and infectious disease. Recent technological and methodological advances that will carry the blood transcriptome research field forward are also discussed.
Immunity | 2013
Gerlinde Obermoser; Scott R. Presnell; Kelly Domico; Hui Xu; Yuanyuan Wang; Esperanza Anguiano; LuAnn Thompson-Snipes; Rajaram Ranganathan; Brad Zeitner; Anna Bjork; David Anderson; Cate Speake; Emily Ruchaud; Jason A. Skinner; Laia Alsina; Mamta Sharma; Hélène Dutartre; Alma Martina Cepika; Elisabeth Israelsson; Phuong Nguyen; Quynh Anh Nguyen; A. Carson Harrod; Sandra Zurawski; Virginia Pascual; Hideki Ueno; Gerald T. Nepom; Charlie Quinn; Derek Blankenship; Karolina Palucka; Jacques Banchereau
Systems immunology approaches were employed to investigate innate and adaptive immune responses to influenza and pneumococcal vaccines. These two non-live vaccines show different magnitudes of transcriptional responses at different time points after vaccination. Software solutions were developed to explore correlates of vaccine efficacy measured as antibody titers at day 28. These enabled a further dissection of transcriptional responses. Thus, the innate response, measured within hours in the peripheral blood, was dominated by an interferon transcriptional signature after influenza vaccination and by an inflammation signature after pneumococcal vaccination. Day 7 plasmablast responses induced by both vaccines was more pronounced after pneumococcal vaccination. Together, these results suggest that comparing global immune responses elicited by different vaccines will be critical to our understanding of the immune mechanisms underpinning successful vaccination.