Damien F. Hudson
Royal Children's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Damien F. Hudson.
Developmental Cell | 2003
Damien F. Hudson; Paola Vagnarelli; Reto Gassmann; William C. Earnshaw
The dramatic condensation of chromosomes that occurs during mitosis is widely thought to be largely controlled by a protein complex termed condensin. Here, we describe a conditional knockout of the condensin subunit ScII/SMC2 in chicken DT40 cells. In cells lacking this condensin subunit, chromosome condensation is delayed, but ultimately reaches near-normal levels. However, these chromosomes are structurally compromised. Kinetochores appear normal, but the localization of nonhistone proteins such as topoisomerase II and INCENP is aberrant. Both proteins also fail to partition into the chromosome scaffold fraction, which appears to be largely missing in the absence of condensin. Furthermore, the chromosomes lack structural integrity, as defined by an assay that tests the stability of the chromosomal higher-order structure. Thus, a major function of condensin is to promote the correct association of nonhistone proteins with mitotic chromosomes, and this is essential for establishment of a robust chromosome structure.
Cell | 2010
Shinya Ohta; Jimi-Carlo Bukowski-Wills; Luis Sanchez-Pulido; Flavia de Lima Alves; Laura Wood; Zhuo A. Chen; Melpi Platani; Lutz Fischer; Damien F. Hudson; Chris P. Ponting; Tatsuo Fukagawa; William C. Earnshaw; Juri Rappsilber
Summary Despite many decades of study, mitotic chromosome structure and composition remain poorly characterized. Here, we have integrated quantitative proteomics with bioinformatic analysis to generate a series of independent classifiers that describe the ∼4,000 proteins identified in isolated mitotic chromosomes. Integrating these classifiers by machine learning uncovers functional relationships between protein complexes in the context of intact chromosomes and reveals which of the ∼560 uncharacterized proteins identified here merits further study. Indeed, of 34 GFP-tagged predicted chromosomal proteins, 30 were chromosomal, including 13 with centromere-association. Of 16 GFP-tagged predicted nonchromosomal proteins, 14 were confirmed to be nonchromosomal. An unbiased analysis of the whole chromosome proteome from genetic knockouts of kinetochore protein Ska3/Rama1 revealed that the APC/C and RanBP2/RanGAP1 complexes depend on the Ska complex for stable association with chromosomes. Our integrated analysis predicts that up to 97 new centromere-associated proteins remain to be discovered in our data set.
Chromosome Research | 2009
Damien F. Hudson; Kathryn M. Marshall; William C. Earnshaw
Condensin is a highly conserved pentameric complex consisting of two structural maintenance of chromosome (SMC) ATPase subunits and three auxiliary components. While initially regarded as a key driver of mitotic chromosome condensation, condensin is increasingly viewed as having a more subtle influence on chromosome architecture. The two condensin complexes are required to direct the correct folding and organization of chromosomes prior to anaphase and for keeping the chromosomes compact as they separate to the poles. This ancient complex is essential in mitosis and meiosis and has additional roles in gene regulation and DNA repair. The wide variety of biochemical and genetic tools available are gradually unravelling the numerous roles condensin plays during the cell cycle and shedding light on its mechanism of action.
Molecular Biology of the Cell | 2009
Susana A. Ribeiro; Jesse C. Gatlin; Yimin Dong; Ajit P. Joglekar; Lisa A. Cameron; Damien F. Hudson; Christine J. Farr; Bruce F. McEwen; E. D. Salmon; William C. Earnshaw; Paola Vagnarelli
When chromosomes are aligned and bioriented at metaphase, the elastic stretch of centromeric chromatin opposes pulling forces exerted on sister kinetochores by the mitotic spindle. Here we show that condensin ATPase activity is an important regulator of centromere stiffness and function. Condensin depletion decreases the stiffness of centromeric chromatin by 50% when pulling forces are applied to kinetochores. However, condensin is dispensable for the normal level of compaction (rest length) of centromeres, which probably depends on other factors that control higher-order chromatin folding. Kinetochores also do not require condensin for their structure or motility. Loss of stiffness caused by condensin-depletion produces abnormal uncoordinated sister kinetochore movements, leads to an increase in Mad2(+) kinetochores near the metaphase plate and delays anaphase onset.
Journal of Cell Biology | 2012
Kumiko Samejima; Itaru Samejima; Paola Vagnarelli; Hiromi Ogawa; Giulia Vargiu; David A. Kelly; Flavia de Lima Alves; Alastair Kerr; Lydia C. Green; Damien F. Hudson; Shinya Ohta; Carol A. Cooke; Christine J. Farr; Juri Rappsilber; William C. Earnshaw
During the shaping of mitotic chromosomes, KIF4 and condensin work in parallel to promote lateral chromatid compaction and in opposition to topoisomerase IIα, which shortens the chromatid arms.
Journal of Cell Science | 2012
L. C. Green; Paul Kalitsis; T. M. Chang; M. Cipetic; Ji Hun Kim; Owen J. Marshall; Lynne Turnbull; Cynthia B. Whitchurch; P. Vagnarelli; K. Samejima; William C. Earnshaw; K. H. A. Choo; Damien F. Hudson
In vertebrates, two condensin complexes exist, condensin I and condensin II, which have differing but unresolved roles in organizing mitotic chromosomes. To dissect accurately the role of each complex in mitosis, we have made and studied the first vertebrate conditional knockouts of the genes encoding condensin I subunit CAP-H and condensin II subunit CAP-D3 in chicken DT40 cells. Live-cell imaging reveals highly distinct segregation defects. CAP-D3 (condensin II) knockout results in masses of chromatin-containing anaphase bridges. CAP-H (condensin I)-knockout anaphases have a more subtle defect, with chromatids showing fine chromatin fibres that are associated with failure of cytokinesis and cell death. Super-resolution microscopy reveals that condensin-I-depleted mitotic chromosomes are wider and shorter, with a diffuse chromosome scaffold, whereas condensin-II-depleted chromosomes retain a more defined scaffold, with chromosomes more stretched and seemingly lacking in axial rigidity. We conclude that condensin II is required primarily to provide rigidity by establishing an initial chromosome axis around which condensin I can arrange loops of chromatin.
Journal of Cell Biology | 2009
Zhenjie Xu; Hiromi Ogawa; Paola Vagnarelli; Jan H. Bergmann; Damien F. Hudson; Sandrine Ruchaud; Tatsuo Fukagawa; William C. Earnshaw; Kumiko Samejima
Dynamic localization of the chromosomal passenger complex (CPC) during mitosis is essential for its diverse functions. CPC targeting to centromeres involves interactions between Survivin, Borealin, and the inner centromere protein (CENP [INCENP]) N terminus. In this study, we investigate how interactions between the INCENP C terminus and aurora B set the level of kinase activity. Low levels of kinase activity, seen in INCENP-depleted cells or in cells expressing a mutant INCENP that cannot bind aurora B, are sufficient for a spindle checkpoint response when microtubules are absent but not against low dose taxol. Intermediate kinase activity levels obtained with an INCENP mutant that binds aurora B but cannot fully activate it are sufficient for a robust response against taxol, but cannot trigger CPC transfer from the chromosomes to the anaphase spindle midzone. This transfer requires significantly higher levels of aurora B activity. These experiments reveal that INCENP interactions with aurora B in vivo modulate the level of kinase activity, thus regulating CPC localization and functions during mitosis.
Molecular Biology of the Cell | 2008
Damien F. Hudson; Shinya Ohta; Tina Freisinger; Fiona MacIsaac; Lau Sennels; Flavia de Lima Alves; Fan Lai; Alastair Kerr; Juri Rappsilber; William C. Earnshaw
We engineered mutants into residues of SMC2 to dissect the role of ATPase function in the condensin complex. These residues are predicted to be involved in ATP binding or hydrolysis and in the Q-loop, which is thought to act as a mediator of conformational changes induced by substrate binding. All the engineered ATPase mutations resulted in lethality when introduced into SMC2 null cells. We found that ATP binding, but not hydrolysis, is essential to allow stable condensin association with chromosomes. How SMC proteins bind and interact with DNA is still a major question. Cohesin may form a ring structure that topologically encircles DNA. We examined whether condensin behaves in an analogous way to its cohesin counterpart, and we have generated a cleavable form of biologically active condensin with PreScission protease sites engineered into the SMC2 protein. This has allowed us to demonstrate that topological integrity of the SMC2-SMC4 heterodimer is not necessary for the stability of the condensin complex in vitro or for its stable association with mitotic chromosomes. Thus, despite their similar molecular organization, condensin and cohesin exhibit fundamental differences in their structure and function.
Nature Communications | 2013
Ji Hun Kim; Tao Zhang; Nicholas C. Wong; N. Davidson; Jovana Maksimovic; Alicia Oshlack; William C. Earnshaw; Paul Kalitsis; Damien F. Hudson
The condensin complex is essential for correct packaging and segregation of chromosomes during mitosis and meiosis in all eukaryotes. To date, the genome-wide location and the nature of condensin-binding sites have remained elusive in vertebrates. Here we report the genome-wide map of condensin I in chicken DT40 cells. Unexpectedly, we find that condensin I binds predominantly to promoter sequences in mitotic cells. We also find a striking enrichment at both centromeres and telomeres, highlighting the importance of the complex in chromosome segregation. Taken together, the results show that condensin I is largely absent from heterochromatic regions. This map of the condensin I binding sites on the chicken genome reveals that patterns of condensin distribution on chromosomes are conserved from prokaryotes, through yeasts to vertebrates. Thus in three kingdoms of life, condensin is enriched on promoters of actively transcribed genes and at loci important for chromosome segregation.
PLOS Genetics | 2015
M Tang; Shelley A. Jacobs; Deidre M. Mattiske; Yu May Soh; Alison N. Graham; An Tran; Shu Ly Lim; Damien F. Hudson; Paul Kalitsis; Moira K. O’Bryan; Lee H. Wong; Jeffrey R. Mann
Histones package DNA and regulate epigenetic states. For the latter, probably the most important histone is H3. Mammals have three near-identical H3 isoforms: canonical H3.1 and H3.2, and the replication-independent variant H3.3. This variant can accumulate in slowly dividing somatic cells, replacing canonical H3. Some replication-independent histones, through their ability to incorporate outside S-phase, are functionally important in the very slowly dividing mammalian germ line. Much remains to be learned of H3.3 functions in germ cell development. Histone H3.3 presents a unique genetic paradigm in that two conventional intron-containing genes encode the identical protein. Here, we present a comprehensive analysis of the developmental effects of null mutations in each of these genes. H3f3a mutants were viable to adulthood. Females were fertile, while males were subfertile with dysmorphic spermatozoa. H3f3b mutants were growth-deficient, dying at birth. H3f3b heterozygotes were also growth-deficient, with males being sterile because of arrest of round spermatids. This sterility was not accompanied by abnormalities in sex chromosome inactivation in meiosis I. Conditional ablation of H3f3b at the beginning of folliculogenesis resulted in zygote cleavage failure, establishing H3f3b as a maternal-effect gene, and revealing a requirement for H3.3 in the first mitosis. Simultaneous ablation of H3f3a and H3f3b in folliculogenesis resulted in early primary oocyte death, demonstrating a crucial role for H3.3 in oogenesis. These findings reveal a heavy reliance on H3.3 for growth, gametogenesis, and fertilization, identifying developmental processes that are particularly susceptible to H3.3 deficiency. They also reveal partial redundancy in function of H3f3a and H3f3b, with the latter gene being generally the most important.