Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Damien Roussel is active.

Publication


Featured researches published by Damien Roussel.


Biochimica et Biophysica Acta | 2001

Mitochondrial proton leak and the uncoupling protein 1 homologues

Jeffrey A. Stuart; Susana Cadenas; Mika B. Jekabsons; Damien Roussel; Martin D. Brand

Mitochondrial proton leak is the largest single contributor to the standard metabolic rate (SMR) of a rat, accounting for about 20% of SMR. Yet the mechanisms by which proton leak occurs are incompletely understood. The available evidence suggests that both phospholipids and proteins in the mitochondrial inner membrane are important determinants of proton conductance. The uncoupling protein 1 homologues (e.g. UCP2, UCP3) may play a role in mediating proton leak, but it is unlikely they account for all of the observed proton conductance. Experimental data regarding the functions of these proteins include important ambiguities and contradictions which must be addressed before their function can be confirmed. The physiological role of the proton leak, and of the uncoupling protein 1 homologues, remains similarly unclear.


Biochemical Journal | 2002

Artifactual uncoupling by uncoupling protein 3 in yeast mitochondria at the concentrations found in mouse and rat skeletal-muscle mitochondria.

James A. Harper; Jeffrey A. Stuart; Mika B. Jekabsons; Damien Roussel; Kevin M. Brindle; Keith Dickinson; Robert B. Jones; Martin D. Brand

Western blots detected uncoupling protein 3 (UCP3) in skeletal-muscle mitochondria from wild-type but not UCP3 knock-out mice. Calibration with purified recombinant UCP3 showed that mouse and rat skeletal muscle contained 0.14 microg of UCP3/mg of mitochondrial protein. This very low UCP3 content is 200-700-fold less than the concentration of UCP1 in brown-adipose-tissue mitochondria from warm-adapted hamster (24-84 microg of UCP1/mg of mitochondrial protein). UCP3 was present in brown-adipose-tissue mitochondria from warm-adapted rats but was undetectable in rat heart mitochondria. We expressed human UCP3 in yeast mitochondria at levels similar to, double and 7-fold those found in rodent skeletal-muscle mitochondria. Yeast mitochondria containing UCP3 were more uncoupled than empty-vector controls, particularly at concentrations that were 7-fold physiological. However, uncoupling by UCP3 was not stimulated by the known activators palmitate and superoxide; neither were they inhibited by GDP, suggesting that the observed uncoupling was a property of non-native protein. As a control, UCP1 was expressed in yeast mitochondria at similar concentrations to that of UCP3 and at up to 50% of the physiological level of UCP1. Low levels of UCP1 gave palmitate-dependent and GDP-sensitive proton conductance but higher levels of UCP1 caused an additional GDP-insensitive uncoupling artifact. We conclude that the uncoupling of yeast mitochondria by high levels of UCP3 expression is entirely an artifact and provides no evidence for any native uncoupling activity of the protein.


Aging Cell | 2011

Pyruvate imbalance mediates metabolic reprogramming and mimics lifespan extension by dietary restriction in Caenorhabditis elegans

Laurent Mouchiroud; Laurent Molin; Prasad Kasturi; Mohamed N. Triba; Marc-Emmanuel Dumas; Marieangela C. Wilson; Andrew P. Halestrap; Damien Roussel; Ingrid Masse; Nicolas Dallière; Laurent Ségalat; Marc Billaud; Florence Solari

Dietary restriction (DR) is the most universal intervention known to extend animal lifespan. DR also prevents tumor development in mammals, and this effect requires the tumor suppressor PTEN. However, the metabolic and cellular processes that underly the beneficial effects of DR are poorly understood. We identified slcf‐1 in an RNAi screen for genes that extend Caenorhabditis elegans lifespan in a PTEN/daf‐18‐dependent manner. We showed that slcf‐1 mutation, which increases average lifespan by 40%, mimics DR in worms fed ad libitum. An NMR‐based metabolomic characterization of slcf‐1 mutants revealed lower lipid levels compared to wild‐type animals, as expected for dietary‐restricted animals, but also higher pyruvate content. Epistasis experiments and metabolic measurements support a model in which the long lifespan of slcf‐1 mutants relies on increased mitochondrial pyruvate metabolism coupled to an adaptive response to oxidative stress. This response requires DAF‐18/PTEN and the previously identified DR effectors PHA‐4/FOXA, HSF‐1/HSF1, SIR‐2.1/SIRT‐1, and AMPK/AAK‐2. Overall, our data show that pyruvate homeostasis plays a central role in lifespan control in C. elegans and that the beneficial effects of DR results from a hormetic mechanism involving the mitochondria. Analysis of the SLCF‐1 protein sequence predicts that slcf‐1 encodes a plasma membrane transporter belonging to the conserved monocarboxylate transporter family. These findings suggest that inhibition of this transporter homolog in mammals might also promote a DR response.


The Journal of Experimental Biology | 2010

Cold-acclimation-induced non-shivering thermogenesis in birds is associated with upregulation of avian UCP but not with innate uncoupling or altered ATP efficiency

Loïc Teulier; Jean-Louis Rouanet; Dominique Letexier; Caroline Romestaing; Maud Belouze; Claude Duchamp; Damien Roussel

SUMMARY Despite their lack of brown adipose tissue, some bird species develop regulatory non-shivering thermogenesis (NST) of skeletal muscle origin in response to cold acclimation. Mechanisms involved in avian NST are still unclear but may involve reduced energetic coupling in skeletal muscle mitochondria through the expression of an avian homologue of mammalian uncoupling proteins. The aim of this work was to investigate whether the expression of avian uncoupling protein (avUCP) would correlate with the capacity for cold-induced muscle NST. Various levels of cold acclimation were obtained by rearing 1-week-old ducklings (Cairina moschata) for 4 weeks at three different ambient temperatures (25°C, 11°C or 4°C). Muscle NST was measured by simultaneous recordings of metabolic rate and electromyographic activity (gastrocnemius muscle) at ambient temperatures (Ta) ranging from 27°C to −5°C. The expression of avUCP gene and mitochondrial bioenergetics were also determined in gastrocnemius muscle. Results showed that muscle NST capacity depends on the Ta at which ducklings were acclimated, i.e. the lower the rearing temperature, the higher the capacity for NST. This increased metabolic heat production occurred in parallel with an upregulation of avUCP, which was not associated with a change in mitochondrial membrane conductance. The intensity of mitochondrial oxidative phosphorylation also increased in proportion with the harshness of cold, while the efficiency of ATP generation was equally effective in all three acclimation temperatures. In the absence of mitochondrial uncoupling, these data indicate a clear link between avUCP expression and the capacity of ducklings to adjust their muscular aerobic activity to cold exposure.


The Journal of Experimental Biology | 2012

Alteration of mitochondrial efficiency affects oxidative balance, development and growth in frog (Rana temporaria) tadpoles

Karine Salin; Emilien Luquet; Damien Roussel

SUMMARY Mitochondria are known to play a central role in life history processes, being the main source of reactive oxygen species (ROS), which promote oxidative constraint. Surprisingly, although the main role of the mitochondria is to produce ATP, the plasticity of mitochondrial ATP generation has received little attention in life history studies. Yet, mitochondrial energy transduction represents the physiological link between environmental resources and energy allocated to animal performance. Studying both facets of mitochondrial functioning (ATP and ROS production) would allow better understanding of the proximate mechanisms underlying life history. We have experimentally modulated the mitochondrial capacity to generate ROS and ATP during larval development of Rana temporaria tadpoles, via chronic exposure (34 days) to a mitochondrial uncoupler (2,4-dinitrophenol, dNP). The aim was to better understand the impact of mitochondrial uncoupling on both responses in terms of oxidative balance, energy input (oxygen and feeding consumption) and energy output (growth and development of the tadpole). Exposure to 2,4-dNP reduced mitochondrial ROS generation, total antioxidant defences and oxidative damage in treated tadpoles compared with controls. Despite the beneficial effect of dNP on oxidative status, development and growth rates of treated tadpoles were lower than those in the control group. Treatment of tadpoles with 2,4-dNP promoted a mild mitochondrial uncoupling and enhanced metabolic rate. These tadpoles did not increase their food consumption, and thus failed to compensate for the energy loss elicited by the decrease in the efficiency of ATP production. These data suggest that the cost of ATP production, rather than the oxidative balance, is the parameter that constrains growth/development of tadpoles, highlighting the central role of energy transduction in larval performance.


BMC Physiology | 2010

Up-regulation of avian uncoupling protein in cold-acclimated and hyperthyroid ducklings prevents reactive oxygen species production by skeletal muscle mitochondria

Damien Roussel; Caroline Romestaing; Maud Belouze; Jean-Louis Rouanet; Dominique Desplanches; Brigitte Sibille; Stéphane Servais; Claude Duchamp

BackgroundAlthough identified in several bird species, the biological role of the avian homolog of mammalian uncoupling proteins (avUCP) remains extensively debated. In the present study, the functional properties of isolated mitochondria were examined in physiological or pharmacological situations that induce large changes in avUCP expression in duckling skeletal muscle.ResultsThe abundance of avUCP mRNA, as detected by RT-PCR in gastrocnemius muscle but not in the liver, was markedly increased by cold acclimation (CA) or pharmacological hyperthyroidism but was down-regulated by hypothyroidism. Activators of UCPs, such as superoxide with low doses of fatty acids, stimulated a GDP-sensitive proton conductance across the inner membrane of muscle mitochondria from CA or hyperthyroid ducklings. The stimulation was much weaker in controls and not observed in hypothyroid ducklings or in any liver mitochondrial preparations. The production of endogenous mitochondrial reactive oxygen species (ROS) was much lower in muscle mitochondria from CA and hyperthyroid ducklings than in the control or hypothyroid groups. The addition of GDP markedly increased the mitochondrial ROS production of CA or hyperthyroid birds up to, or above, the level of control or hypothyroid ducklings. Differences in ROS production among groups could not be attributed to changes in antioxidant enzyme activities (superoxide dismutase or glutathione peroxidase).ConclusionThis work provides the first functional in vitro evidence that avian UCP regulates mitochondrial ROS production in situations of enhanced metabolic activity.


British Journal of Nutrition | 2003

Mitochondrial energy metabolism in a model of undernutrition induced by dexamethasone

Jean-François Dumas; Gilles Simard; Damien Roussel; Olivier Douay; Françoise Foussard; Yves Malthièry; Patrick Ritz

The present investigation was undertaken to evaluate whether mitochondrial energy metabolism is altered in a model of malnutrition induced by dexamethasone (DEX) treatment (1.5 mg/kg per d for 5 d). The gastrocnemius and liver mitochondria were isolated from DEX-treated, pair-fed (PF) and control (CON) rats. Body weight was reduced significantly more in the DEX-treated group (-16%) than in the PF group (-9%). DEX treatment increased liver mass (+59% v. PF, +23% v. CON) and decreased gastrocnemius mass. Moreover, in DEX-treated rats, liver mitochondria had an increased rate of non-phosphorylative O2 consumption with all substrates (approximately +42%). There was no difference in enzymatic complex activities in liver mitochondria between rat groups. Collectively, these results suggest an increased proton leak and/or redox slipping in the liver mitochondria of DEX-treated rats. In addition, DEX decreased the thermodynamic coupling and efficiency of oxidative phosphorylation. We therefore suggest that this increase in the proton leak and/or redox slip in the liver is responsible for the decrease in the thermodynamic efficiency of energy conversion. In contrast, none of the variables of energy metabolism determined in gastrocnemius mitochondria was altered by DEX treatment. Therefore, it appears that DEX specifically affects mitochondrial energy metabolism in the liver.


Biochemical Journal | 2004

Kinetics and control of oxidative phosphorylation in rat liver mitochondria after dexamethasone treatment.

Damien Roussel; Jean-François Dumas; Gilles Simard; Yves Malthièry; Patrick Ritz

The present investigation was undertaken in order to evaluate the contributions of ATP synthesis and proton leak reactions to the rate of active respiration of liver mitochondria, which is altered following dexamethasone treatment (1.5 mg/kg per day for 5 days). We applied top-down metabolic control analysis and its extension, elasticity analysis, to gain insight into the mechanisms of glucocorticoid regulation of mitochondrial bioenergetics. Liver mitochondria were isolated from dexamethasone-treated, pair-fed and control rats when in a fed or overnight fasted state. Injection of dexamethasone for 5 days resulted in an increase in the fraction of the proton cycle of phosphorylating liver mitochondria, which was associated with a decrease in the efficiency of the mitochondrial oxidative phosphorylation process in liver. This increase in proton leak activity occurred with little change in the mitochondrial membrane potential, despite a significant decrease in the rate of oxidative phosphorylation. Regulation analysis indicates that mitochondrial membrane potential homoeostasis is achieved by equal inhibition of the mitochondrial substrate oxidation and phosphorylation reactions in rats given dexamethasone. Our results also suggest that active liver mitochondria from dexamethasone-treated rats are capable of maintaining phosphorylation flux for cellular purposes, despite an increase in the energetic cost of mitochondrial ATP production due to increased basal proton permeability of the inner membrane. They also provide a complete description of the effects of dexamethasone treatment on liver mitochondrial bioenergetics.


FEBS Letters | 2003

Dexamethasone treatment specifically increases the basal proton conductance of rat liver mitochondria

Damien Roussel; Jean-François Dumas; Antoine Augeraud; Olivier Douay; Françoise Foussard; Yves Malthièry; Gilles Simard; Patrick Ritz

We investigated the role that mitochondrial proton leak may play in the glucocorticoid‐induced hypermetabolic state. Sprague–Dawley rats were injected with dexamethasone over a period of 5 days. Liver mitochondria and gastrocnemius subsarcolemmal and intermyofibrillar mitochondria were isolated from dexamethasone‐treated, pair‐fed and control rats. Respiration and membrane potential were measured simultaneously using electrodes sensitive to oxygen and to the potential‐dependent probe triphenylmethylphosphonium, respectively. Five days of dexamethasone injection resulted in a marked increase in the basal proton conductance of liver mitochondria, but not in the muscle mitochondrial populations. This effect would have a modest impact on energy expenditure in rats.


FEBS Letters | 2000

Increase in the adenine nucleotide translocase content of duckling subsarcolemmal mitochondria during cold acclimation

Damien Roussel; François Chaînier; Jean-Louis Rouanet; Hervé Barré

Intermyofibrillar and subsarcolemmal mitochondria were isolated from duckling gastrocnemius muscle. The adenine nucleotide translocase (ANT) content of subsarcolemmal mitochondria was found to be half of that present in intermyofibrillar mitochondria. In addition, cold acclimation resulted in a 1.7‐fold increase in subsarcolemmal mitochondrial ANT content, with intermyofibrillar mitochondrial ANT remaining constant. This change in mitochondrial ANT content correlates with the previously reported cold‐induced change in the sensitivity of mitochondria to palmitate‐inhibited ATP synthesis [Roussel et al. (1998) FEBS Lett. 439, 258–262]. It is suggested that the mitochondrial ANT content enhances or reduces the fatty acid uncoupling activity in tissue, depending on the energetic state of mitochondria.

Collaboration


Dive into the Damien Roussel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge