Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Damien Vitour is active.

Publication


Featured researches published by Damien Vitour.


Journal of Immunology | 2007

Cutting Edge: Influenza A Virus Activates TLR3-Dependent Inflammatory and RIG-I-Dependent Antiviral Responses in Human Lung Epithelial Cells

Ronan Le Goffic; Julien Pothlichet; Damien Vitour; Takashi Fujita; Eliane F. Meurs; Mustapha Si-Tahar

Influenza A virus (IAV) triggers a contagious acute respiratory disease that causes considerable mortality annually. Recently, we established a role for the pattern-recognition TLR3 in the response of lung epithelial cells to IAV-derived dsRNA. However, additional nucleic acid-recognition proteins have lately been implicated as key viral sensors, including the RNA helicases retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated gene (MDA)-5. In this study, we investigated the respective role of TLR3 vs RIG-I/MDA-5 signaling in human respiratory epithelial cells infected by IAV using BEAS-2B cells transfected with vectors encoding either a dominant-negative form of TLR3 or of mitochondrial antiviral signaling protein (MAVS; a signaling intermediate of RIG-I and MDA-5), or with plasmids overexpressing functional RIG-I or MDA-5. We demonstrate that the sensing of IAV by TLR3 primarily regulates a proinflammatory response, whereas RIG-I (but not MDA-5) mediates both a type I IFN-dependent antiviral signaling and a proinflammatory response.


Journal of Virology | 2006

Dissociation of a MAVS/IPS-1/VISA/Cardif-IKKepsilon molecular complex from the mitochondrial outer membrane by hepatitis C virus NS3-4A proteolytic cleavage

Rongtuan Lin; Judith Lacoste; Peyman Nakhaei; Qiang Sun; Long Yang; Suzanne Paz; Peter Wilkinson; Ilkka Julkunen; Damien Vitour; Eliane F. Meurs; John Hiscott

ABSTRACT Intracellular RNA virus infection is detected by the cytoplasmic RNA helicase RIG-I that plays an essential role in signaling to the host antiviral response. Recently, the adapter molecule that links RIG-I sensing of incoming viral RNA to downstream signaling and gene activation events was characterized by four different groups; MAVS/IPS-1-1/VISA/Cardif contains an amino-terminal CARD domain and a carboxyl-terminal mitochondrial transmembrane sequence that localizes to the mitochondrial membrane. Furthermore, the hepatitis C virus NS3-4A protease complex specifically targets MAVS/IPS-1/VISA/Cardif for cleavage as part of its immune evasion strategy. With a novel search program written in python, we also identified an uncharacterized protein, KIAA1271 (K1271), containing a single CARD-like domain at the N terminus and a Leu-Val-rich C terminus that is identical to that of MAVS/IPS-1/VISA/Cardif. Using a combination of biochemical analysis, subcellular fractionation, and confocal microscopy, we now demonstrate that NS3-4A cleavage of MAVS/IPS-1/VISA/Cardif/K1271 results in its dissociation from the mitochondrial membrane and disrupts signaling to the antiviral immune response. Furthermore, virus-induced IKKε kinase, but not TBK1, colocalized strongly with MAVS at the mitochondrial membrane, and the localization of both molecules was disrupted by NS3-4A expression. Mutation of the critical cysteine 508 to alanine was sufficient to maintain mitochondrial localization of MAVS/IPS-1/VISA/Cardif and IKKε in the presence of NS3-4A. These observations provide an outline of the mechanism by which hepatitis C virus evades the interferon antiviral response.


Embo Molecular Medicine | 2011

A loss-of-function variant of the antiviral molecule MAVS is associated with a subset of systemic lupus patients.

Julien Pothlichet; Timothy B. Niewold; Damien Vitour; Brigitte Solhonne; Mary K. Crow; Mustapha Si-Tahar

Dysregulation of the antiviral immune response may contribute to autoimmune diseases. Here, we hypothesized that altered expression or function of MAVS, a key molecule downstream of the viral sensors RIG‐I and MDA‐5, may impair antiviral cell signalling and thereby influence the risk for systemic lupus erythematosus (SLE), the prototype autoimmune disease. We used molecular techniques to screen non‐synonymous single nucleotide polymorphisms (SNPs) in the MAVS gene for functional significance in human cell lines and identified one critical loss‐of‐function variant (C79F, rs11905552). This SNP substantially reduced expression of type I interferon (IFN) and other proinflammatory mediators and was found almost exclusively in the African‐American population. Importantly, in African‐American SLE patients, the C79F allele was associated with low type I IFN production and absence of anti‐RNA‐binding protein autoantibodies. These serologic associations were not related to a distinct, functionally neutral, MAVS SNP Q198K. Hence, this is the first demonstration that an uncommon genetic variant in the MAVS gene has a functional impact upon the anti‐viral IFN pathway in vivo in humans and is associated with a novel sub‐phenotype in SLE. This study demonstrates the utility of functional data in selecting rare variants for genetic association studies, allowing for fewer comparisons requiring statistical correction and for alternate lines of evidence implicating the particular variant in disease.


Journal of Virology | 2008

Nuclear Localization of Cytoplasmic Poly(A)-Binding Protein upon Rotavirus Infection Involves the Interaction of NSP3 with eIF4G and RoXaN

Maya Harb; Michelle M. Becker; Damien Vitour; Carolina H. Baron; Patrice Vende; Spencer C. Brown; Susanne Bolte; Stefan T. Arold; Didier Poncet

ABSTRACT Rotavirus nonstructural protein NSP3 interacts specifically with the 3′ end of viral mRNAs, with the eukaryotic translation initiation factor eIF4G, and with RoXaN, a cellular protein of yet-unknown function. By evicting cytoplasmic poly(A) binding protein (PABP-C1) from translation initiation complexes, NSP3 shuts off the translation of cellular polyadenylated mRNAs. We show here that PABP-C1 evicted from eIF4G by NSP3 accumulates in the nucleus of rotavirus-infected cells. Through modeling of the NSP3-RoXaN complex, we have identified mutations in NSP3 predicted to interrupt its interaction with RoXaN without disturbing the NSP3 interaction with eIF4G. Using these NSP3 mutants and a deletion mutant unable to associate with eIF4G, we show that the nuclear localization of PABP-C1 not only is dependent on the capacity of NSP3 to interact with eIF4G but also requires the interaction of NSP3 with a specific region in RoXaN, the leucine- and aspartic acid-rich (LD) domain. Furthermore, we show that the RoXaN LD domain functions as a nuclear export signal and that RoXaN tethers PABP-C1 with RNA. This work identifies RoXaN as a cellular partner of NSP3 involved in the nucleocytoplasmic localization of PABP-C1.


Journal of Biological Chemistry | 2009

Polo-like kinase 1 (PLK1) regulates interferon (IFN) induction by MAVS.

Damien Vitour; Stéphanie Dabo; Malek Ahmadi Pour; Myriam Vilasco; Pierre-Olivier Vidalain; Yves Jacob; Mariana Mezel-Lemoine; Suzanne Paz; Meztli Arguello; Rongtuan Lin; Frédéric Tangy; John Hiscott; Eliane F. Meurs

The mitochondria-bound adapter MAVS participates in IFN induction by recruitment of downstream partners such as members of the TRAF family, leading to activation of NF-κB, and the IRF3 pathways. A yeast two-hybrid search for MAVS-interacting proteins yielded the Polo-box domain (PBD) of the mitotic Polo-like kinase PLK1. We showed that PBD associates with two different domains of MAVS in both dependent and independent phosphorylation events. The phosphodependent association requires the phosphopeptide binding ability of PBD. It takes place downstream of the proline-rich domain of MAVS, within an STP motif, characteristic of the binding of PLK1 to its targets, where the central Thr234 residue is phosphorylated. Its phosphoindependent association takes place at the C terminus of MAVS. PLK1 strongly inhibits the ability of MAVS to activate the IRF3 and NF-κB pathways and to induce IFN. Reciprocally, depletion of PLK1 can increase IFN induction in response to RIG-I/SeV or RIG-I/poly(I)-poly(C) treatments. This inhibition is dependent on the phosphoindependent association of PBD at the C terminus of MAVS where it disrupts the association of MAVS with its downstream partner TRAF3. IFN induction was strongly inhibited in cells arrested in G2/M by nocodazole, which provokes increased expression of endogenous PLK1. Interestingly, depletion of PLK1 from these nocodazole-treated cells could restore, at least partially, IFN induction. Altogether, these data demonstrate a new function for PLK1 as a regulator of IFN induction and provide the basis for the development of inhibitors preventing the PLK1/MAVS association to sustain innate immunity.


Science Signaling | 2007

Regulation of Interferon Production by RIG-I and LGP2: A Lesson in Self-Control

Damien Vitour; Eliane F. Meurs

The cytoplasmic CARD-containing DExD/H box RNA helicases RIG-I and MDA5 act as sensors of viral infections through recognition of viral double-stranded (ds) RNAs. They both associate with the mitochondrial adaptor IPS-1 (also referred to as MAVS, VISA, and CARDIF) through homotypic CARD-CARD interactions. IPS-1, in turn, triggers signaling pathways, including activation of the protein kinases TBK1 and IKKε, responsible for the phosphorylation of IRF3, a key transcription factor involved in interferon (IFN) synthesis, one essential element of the innate immune response. RIG-I remains in an autoinhibited state in the absence of dsRNA, through an internal repressor domain (RD) that binds within both its CARD and its RNA helicase domains and therefore acts in cis to control its multimerization and interaction with IPS-1. Ectopic expression of the RD prevents signaling and increases cell permissiveness to viruses, including hepatitis C virus. LGP2, which is another DExD/H RNA helicase of the RIG-I and MDA5 family and which is devoid of CARD domain, negatively controls IFN induction at different levels: by sequestering dsRNA, by blocking RIG-I’s multimerization in trans through a domain analogous to the RIG-I RD, and by competing with the protein kinase IKKε for a common interaction site on IPS-1. The ability of RIG-I and LGP2 to exert such a feedback control at the earliest steps of IFN synthesis allows the cells to exert a tight regulation of the induction of the innate immune response.


Journal of Virology | 2004

RoXaN, a Novel Cellular Protein Containing TPR, LD, and Zinc Finger Motifs, Forms a Ternary Complex with Eukaryotic Initiation Factor 4G and Rotavirus NSP3

Damien Vitour; Pierre Lindenbaum; Patrice Vende; Michelle M. Becker; Didier Poncet

ABSTRACT Rotavirus mRNAs are capped but not polyadenylated, and viral proteins are translated by the cellular translation machinery. This is accomplished through the action of the viral nonstructural protein NSP3, which specifically binds the 3′ consensus sequence of viral mRNAs and interacts with the eukaryotic translation initiation factor eIF4G I. To further our understanding of the role of NSP3 in rotavirus replication, we looked for other cellular proteins capable of interacting with this viral protein. Using the yeast two-hybrid assay, we identified a novel cellular protein-binding partner for rotavirus NSP3. This 110-kDa cellular protein, named RoXaN (rotavirus X protein associated with NSP3), contains a minimum of three regions predicted to be involved in protein-protein or nucleic acid-protein interactions. A tetratricopeptide repeat region, a protein-protein interaction domain most often found in multiprotein complexes, is present in the amino-terminal region. In the carboxy terminus, at least five zinc finger motifs are observed, further suggesting the capacity of RoXaN to bind other proteins or nucleic acids. Between these two regions exists a paxillin leucine-aspartate repeat (LD) motif which is involved in protein-protein interactions. RoXaN is capable of interacting with NSP3 in vivo and during rotavirus infection. Domains of interaction were mapped and correspond to the dimerization domain of NSP3 (amino acids 163 to 237) and the LD domain of RoXaN (amino acids 244 to 341). The interaction between NSP3 and RoXaN does not impair the interaction between NSP3 and eIF4G I, and a ternary complex made of NSP3, RoXaN, and eIF4G I can be detected in rotavirus-infected cells, implicating RoXaN in translation regulation.


Hepatology | 2006

The protein kinase IKKε can inhibit HCV expression independently of IFN and its own expression is downregulated in HCV-infected livers†

Myriam Vilasco; Esther Larrea; Damien Vitour; Stéphanie Dabo; Adrien Breiman; Béatrice Regnault; Jose-Ignacio Riezu; Pierre Eid; Jesús Prieto; Eliane F. Meurs

During a viral infection, binding of viral double‐stranded RNAs (dsRNAs) to the cytosolic RNA helicase RIG‐1 leads to recruitment of the mitochondria‐associated Cardif protein, involved in activation of the IRF3‐phosphorylating IKKε/TBK1 kinases, interferon (IFN) induction, and development of the innate immune response. The hepatitis C virus (HCV) NS3/4A protease cleaves Cardif and abrogates both IKKε/TBK1 activation and IFN induction. By using an HCV replicon model, we previously showed that ectopic overexpression of IKKε can inhibit HCV expression. Here, analysis of the IKKε transcriptome profile in these HCV replicon cells showed induction of several genes associated with the antiviral action of IFN. Interestingly, IKKε still inhibits HCV expression in the presence of neutralizing antibodies to IFN receptors or in the presence of a dominant negative STAT1α mutant. This suggests that good IKKε expression levels are important for rapid activation of the cellular antiviral response in HCV‐infected cells, in addition to provoking IFN induction. To determine the physiological importance of IKKε in HCV infection, we then analyzed its expression levels in liver biopsy specimens from HCV‐infected patients. This analysis also included genes of the IFN induction pathway (RIG‐I, MDA5, LGP2, Cardif, TBK1), and three IKKε‐induced genes (IFN‐β, CCL3, and ISG15). The results show significant inhibition of expression of IKKε and of the RNA helicases RIG‐I/MDA5/LGP2 in the HCV‐infected patients, whereas expression of TBK1 and Cardif was not significantly altered. In conclusion, given the antiviral potential of IKKε and of the RNA helicases, these in vivo data strongly support an important role for these genes in the control of HCV infection.(HEPATOLOGY 2006;44:1635–1647.)


Hepatology | 1999

Comparative evaluation of hepatitis C virus RNA quantitation by branched DNA, NASBA, and monitor assays

Françoise Lunel; Pascale Cresta; Damien Vitour; Christopher Payan; Bruno Dumont; Lionel Frangeul; Dorothée Reboul; Christine Brault; Jean-Charles Piette; Jean-Marie Huraux


Journal of General Virology | 2006

A hepatitis C virus (HCV) NS3/4A protease-dependent strategy for the identification and purification of HCV-infected cells

Adrien Breiman; Damien Vitour; Myriam Vilasco; Catherine Ottone; Sonia Molina; Lydiane Pichard; Chantal Fournier; David Delgrange; Pierre Charneau; Gilles Duverlie; Czeslaw Wychowski; Patrick Maurel; Eliane F. Meurs

Collaboration


Dive into the Damien Vitour's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge