Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Damu Tang is active.

Publication


Featured researches published by Damu Tang.


Journal of Biological Chemistry | 2002

ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53.

Damu Tang; Dongcheng Wu; Atsushi Hirao; Jill M. Lahti; Lieqi Liu; Brie Mazza; Vincent J. Kidd; Tak W. Mak; Alistair J. Ingram

In response to DNA damage, ataxia-telangiectasia mutant and ataxia-telangiectasia and Rad-3 activate p53, resulting in either cell cycle arrest or apoptosis. We report here that DNA damage stimuli, including etoposide (ETOP), adriamycin (ADR), ionizing irradiation (IR), and ultraviolet irradiation (UV) activate ERK1/2 (ERK) mitogen-activated protein kinase in primary (MEF and IMR90), immortalized (NIH3T3) and transformed (MCF-7) cells. ERK activation in response to ETOP was abolished in ATM−/− fibroblasts (GM05823) and was independent of p53. The MEK1 inhibitor PD98059 prevented ERK activation but not p53 stabilization. Maximal ERK activation in response to DNA damage was not attenuated in MEFp53−/−. However, ERK activation contributes to either cell cycle arrest or apoptosis in response to low or high intensity DNA insults, respectively. Inhibition of ERK activation by PD98059 or U0126 attenuated p21CIP1 induction, resulting in partial release of the G2/M cell cycle arrest induced by ETOP. Furthermore, PD98059 or U0126 also strongly attenuated apoptosis induced by high dose ETOP, ADR, or UV. Conversely, enforced activation of ERK by overexpression of MEK-1/Q56P sensitized cells to DNA damage-induced apoptosis. Taken together, these results indicate that DNA damage activates parallel ERK and p53 pathways in an ATM-dependent manner. These pathways might function cooperatively in cell cycle arrest and apoptosis.


Journal of Biological Chemistry | 1998

Cleavage of DFF-45/ICAD by Multiple Caspases Is Essential for Its Function during Apoptosis

Damu Tang; Vincent J. Kidd

Apoptosis involves the proteolysis of specific cellular proteins by a group of cysteine proteases known as caspases. Many of these cellular targets are either functionally inactivated (e.g. poly(ADP-ribose) polymerase) or activated (e.g. other caspases, gelsolin) by such processing, thereby facilitating the cell death process. Caspase 3 is involved in the processing of many of these proteins. Recently, however, it was reported that caspase 3 is dispensable for the cleavage of a large number of cellular caspase substrates during apoptosis. Among these substrates is DFF-45/ICAD, a subunit of the heterodimeric DNA fragmentation factor (DFF), otherwise known as caspase-activated DNase (CAD), that mediates genomic DNA degradation during apoptosis. Conversely, others have reported that caspase 3 is essential for the cleavage and activation of DFF-45/ICAD. To resolve this controversy we examined DFF-45/ICAD processing during apoptosis in MCF-7 breast carcinoma cells that lack functional caspase 3 and in MCF-7 cells expressing caspase 3. We found that DFF-45/ICAD is cleaved by two distinct caspases, one of which is caspase 3. Furthermore, cleavage of the carboxyl-terminal region of DFF-45/ICAD, which is necessary for activation of the enzyme, requires functional caspase 3. In the absence of caspase 3 cleavage of the amino-terminal region of DFF-45/ICAD by another caspase occurs, but the DFF-45 enzyme remains inactive.


Journal of Biological Chemistry | 1999

Cycloheximide-induced T-cell Death Is Mediated by a Fas-associated Death Domain-dependent Mechanism

Damu Tang; Jill M. Lahti; Jose Grenet; Vincent J. Kidd

Cycloheximide (CHX) can contribute to apoptotic processes, either in conjunction with another agent (e.g. tumor necrosis factor-α) or on its own. However, the basis of this CHX-induced apoptosis has not been clearly established. In this study, the molecular mechanisms of CHX-induced cell death were examined in two different human T-cell lines. In T-cells undergoing CHX-induced apoptosis (Jurkat), but not in T-cells resistant to the effects of CHX (CEM C7), caspase-8 and caspase-3 were activated. However, the Fas ligand was not expressed in Jurkat cells either before or after treatment with CHX, suggesting that the activation of these caspases does not involve the Fas receptor. To determine whether CHX-induced apoptosis was mediated by a Fas-associated death domain (FADD)-dependent mechanism, a FADD-DN protein was expressed in cells prior to CHX treatment. Its expression effectively inhibited CHX-induced cell death, suggesting that CHX-mediated apoptosis primarily involves a FADD-dependent mechanism. Since CHX treatment did not result in the induction of Fas or FasL, and neutralizing anti-Fas and anti-tumor necrosis factor receptor-1 antibodies did not block CHX-mediated apoptosis, these results may also indicate that FADD functions in a receptor-independent manner. Surprisingly, death effector filaments containing FADD and caspase-8 were observed during CHX treatment of Jurkat, Jurkat-FADD-DN, and CEM C7 cells, suggesting that their formation may be necessary, but not sufficient, for cell death.


International Journal of Cell Biology | 2013

PKM2, a Central Point of Regulation in Cancer Metabolism

Nicholas Wong; Jason De Melo; Damu Tang

Aerobic glycolysis is the dominant metabolic pathway utilized by cancer cells, owing to its ability to divert glucose metabolites from ATP production towards the synthesis of cellular building blocks (nucleotides, amino acids, and lipids) to meet the demands of proliferation. The M2 isoform of pyruvate kinase (PKM2) catalyzes the final and also a rate-limiting reaction in the glycolytic pathway. In the PK family, PKM2 is subjected to a complex regulation by both oncogenes and tumour suppressors, which allows for a fine-tone regulation of PKM2 activity. The less active form of PKM2 drives glucose through the route of aerobic glycolysis, while active PKM2 directs glucose towards oxidative metabolism. Additionally, PKM2 possesses protein tyrosine kinase activity and plays a role in modulating gene expression and thereby contributing to tumorigenesis. We will discuss our current understanding of PKM2s regulation and its many contributions to tumorigenesis.


Journal of Biological Chemistry | 2002

Apoptotic Release of Histones from Nucleosomes

Dongcheng Wu; Alistair J. Ingram; Jill H. Lahti; Brie Mazza; Jose Grenet; Anil Kapoor; Lieqi Liu; Vincent J. Kidd; Damu Tang

Chromatin structure is influenced by histone modification, and this may help direct chromatin behavior to facilitate transcription, DNA replication, and DNA repair. Chromatin condensation and DNA fragmentation are the classic nuclear features but remain poorly characterized. It is highly probable that nucleosomal structure must be altered to allow these features to become apparent, but data to support this construct are lacking. We report here that in response to apoptotic signals from a death receptor (CD95 and tumor necrosis factor-α) or mitochondrial (staurosporine) apoptotic stimulus, the core nucleosomal histones H2A, H2B, H3, and H4 become separated from DNA during apoptosis in Jurkat and HeLa cells and are consequently detectable in the cell lysate prepared using a non-ionic detergent. The timing of this histone release from DNA correlates well with the progression of apoptosis. We also show expression of a caspase cleavage-resistant form of ICAD (ICAD-DM) in Jurkat and HeLa cells abolished DNA fragmentation and also dramatically reduced histone release in apoptotic cells. However, we demonstrate that apoptotic histone release is not an inevitable consequence of CAD/DFF-40-mediated DNA destruction as DNA fragmentation but not histone release occurs efficiently in tumor necrosis factor-α- and etoposide-treated NIH3T3 cells. Furthermore, in an in vitro apoptotic assay, incubation of apoptotic Jurkat cellular extract with non-apoptotic Jurkat nuclei led to nuclear DNA fragmentation without obvious histone release. Taken together, these data demonstrate that CAD/DFF-40 functions indirectly in mediating nucleosomal destruction during apoptosis.


Cancer Letters | 2015

PKM2 contributes to cancer metabolism

Nicholas C. Wong; Diane Ojo; Judy Yan; Damu Tang

Reprogramming of cell metabolism is essential for tumorigenesis, and is regulated by a complex network, in which PKM2 plays a critical role. PKM2 exists as an inactive monomer, less active dimer and active tetramer. While dimeric PKM2 diverts glucose metabolism towards anabolism through aerobic glycolysis, tetrameric PKM2 promotes the flux of glucose-derived carbons for ATP production via oxidative phosphorylation. Equilibrium of the PKM2 dimers and tetramers is critical for tumorigenesis, and is controlled by multiple factors. The PKM2 dimer also promotes aerobic glycolysis by modulating transcriptional regulation. We will discuss the current understanding of PKM2 in regulating cancer metabolism.


Journal of The American Society of Nephrology | 2003

Nitric oxide inhibits stretch-induced MAPK activation in mesangial cells through RhoA inactivation.

Joan C. Krepinsky; Alistair J. Ingram; Damu Tang; Dongcheng Wu; Lieqi Liu; James W. Scholey

Glomerular capillary hypertension is an important determinant of glomerulosclerosis in rats with subtotal renal ablation. Dietary supplementation with L-arginine increases renal nitric oxide (NO) production and limits glomerular injury in this model, and early benefits are seen without altered glomerular capillary pressure. In an in vitro model of hemodynamically mediated signaling, the authors have reported that subjecting MC to cyclic stretch/relaxation activates the mitogen-activated protein kinase p42/44 (Erk) cascade and that NO and cyclic GMP abrogate stretch-induced Erk activation by inducing actin cytoskeletal disassembly. The actin cytoskeleton is regulated by the Rho family of GTPases, including RhoA; therefore, the authors examined the role of RhoA in stretch-induced Erk activation and as an NO target. In primary rat MC subjected to cyclic mechanical strain, RhoA activity was maximally increased (2.4-fold) after 1 min of stretch, and Erk activation temporally followed. The Rho-kinase inhibitor Y-27632 attenuated Erk activation in a dose-dependent manner and prevented stretch-induced actin stress fiber formation. The NO donors S-nitroso-N-acetylpenicillamine and cGMP both inhibited stretch-induced RhoA and Erk activation and stress fiber formation. Infection of MC with the RhoA mutant RhoA-Ala188, which is resistant to NO-dependent phosphorylation, abrogated the effects of NO and cGMP on stretch-induced Erk activation and stress fiber formation. The authors conclude that the early activation of RhoA is essential for stretch-induced actin stress fiber formation and Erk activation in MC, events which are prevented by NO and cGMP through their action on RhoA. Inhibition of RhoA may thus be a new approach to the prevention of hemodynamically mediated glomerular injury.


PLOS ONE | 2013

Regulation of the Tumor Suppressor PTEN through Exosomes: A Diagnostic Potential for Prostate Cancer

Kathleen Gabriel; Alistair J. Ingram; Richard C. Austin; Anil Kapoor; Damu Tang; Fadwa Majeed; Talha Qureshi; Khalid Al-Nedawi

PTEN is a potent tumor-suppressor protein. Aggressive and metastatic prostate cancer (PC) is associated with a reduction or loss of PTEN expression. PTEN reduction often occurs without gene mutations, and its downregulation is not fully understood. Herein, we show that PTEN is incorporated in the cargo of exosomes derived from cancer cells. PTEN is not detected in exosomes derived from normal, noncancerous cells. We found that PTEN can be transferred to other cells through exosomes. In cells that have a reduction or complete loss of PTEN expression, the transferred PTEN is competent to confer tumor-suppression activity to acceptor cells. In PC patients, we show that PTEN is incorporated in the cargo of exosomes that circulate in their blood. Interestingly, normal subjects have no PTEN expression in their blood exosomes. Further, we found that the prostate-specific antigen (PSA) is incorporated in PC patients’ and normal subjects’ blood exosomes. These data suggest that exosomal PTEN can compensate for PTEN loss in PTEN deficient cells, and may have diagnostic value for prostate cancer.


Journal of Clinical Investigation | 2010

Shank-interacting protein–like 1 promotes tumorigenesis via PTEN inhibition in human tumor cells

Lizhi He; Alistair J. Ingram; Adrian P. Rybak; Damu Tang

Inactivation of phosphatase and tensin homolog (PTEN) is a critical step during tumorigenesis, and PTEN inactivation by genetic and epigenetic means has been well studied. There is also evidence suggesting that PTEN negative regulators (PTEN-NRs) have a role in PTEN inactivation during tumorigenesis, but their identity has remained elusive. Here we have identified shank-interacting protein-like 1 (SIPL1) as a PTEN-NR in human tumor cell lines and human primary cervical cancer cells. Ectopic SIPL1 expression protected human U87 glioma cells from PTEN-mediated growth inhibition and promoted the formation of HeLa cell-derived xenograft tumors in immunocompromised mice. Conversely, siRNA-mediated knockdown of SIPL1 expression inhibited the growth of both HeLa cells and DU145 human prostate carcinoma cells in vitro and in vivo in a xenograft tumor model. These inhibitions were reversed by concomitant knockdown of PTEN, demonstrating that SIPL1 affects tumorigenesis via inhibition of PTEN function. Mechanistically, SIPL1 was found to interact with PTEN through its ubiquitin-like domain (UBL), inhibiting the phosphatidylinositol 3,4,5-trisphosphate (PIP3) phosphatase activity of PTEN. Furthermore, SIPL1 expression correlated with loss of PTEN function in PTEN-positive human primary cervical cancer tissue. Taken together, these observations indicate that SIPL1 is a PTEN-NR and that it facilitates tumorigenesis, at least in part, through its PTEN inhibitory function.


Cellular Signalling | 2010

Both ERK1 and ERK2 kinases promote G2/M arrest in etoposide-treated MCF7 cells by facilitating ATM activation.

Fengxiang Wei; Yanyun Xie; Lijian Tao; Damu Tang

The MEK-ERK pathway plays a role in DNA damage response (DDR). This has been thoroughly studied by modulating MEK activation. However, much less has been done to directly examine the contributions of ERK1 and ERK2 kinases to DDR. Etoposide induces G2/M arrest in a variety of cell lines, including MCF7 cells. DNA damage-induced G2/M arrest depends on the activation of the protein kinase ataxia-telangiectasia mutated (ATM). ATM subsequently activates CHK2 by phosphorylating CHK2 threonine 68 (T68) and CHK2 inactivates CDC25C via phosphorylation of its serine 216 (S216), resulting in G2/M arrest. To determine the contribution of ERK1 and ERK2 to etoposide-induced G2/M arrest, we individually knocked-down ERK1 and ERK2 in MCF7 cells using specific small interfering RNA (siRNA). Knockdown of either kinases significantly reduced ATM activation in response to etoposide treatment, and thereby attenuated phosphorylation of the ATM substrates, including the S139 of H2AX (gammaH2AX), p53 S15, and CHK2 T68. Consistent with these observations, knockdown of either ERK1 or ERK2 reduced etoposide-induced CDC25C S216 phosphorylation and significantly compromised etoposide-induced G2/M arrest in MCF7 cells. Taken together, we demonstrated that both ERK1 and ERK2 kinases play a role in etoposide-induced G2/M arrest by facilitating activation of the ATM pathway. These observations suggest that a cellular threshold level of ERK kinase activity is required for the proper checkpoint activation in MCF7 cells.

Collaboration


Dive into the Damu Tang's collaboration.

Top Co-Authors

Avatar

Anil Kapoor

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alistair J. Ingram

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge